5,912 research outputs found
Measuring the Redshift of Reionization with a Modest Array of Low-Frequency Dipoles
The designs of the first generation of cosmological 21-cm observatories are
split between single dipole experiments which integrate over a large patch of
sky in order to find the global (spectral) signature of reionization, and
interferometers with arcminute-scale angular resolution whose goal is to
measure the 3D power spectrum of ionized regions during reionization. We
examine whether intermediate scale instruments with complete Fourier (uv)
coverage are capable of placing new constraints on reionization. We find that
even without using a full power spectrum analysis, the global redshift of
reionization, z_reion, can in principle be measured from the variance in the
21-cm signal among multiple beams as a function of frequency at a roughly 1
degree angular scale. At this scale, the beam-to-beam variance in the
differential brightness temperature peaks when the average neutral fraction was
around 50%, providing a convenient flag of z_reion. We choose a low angular
resolution of order 1 degree to exploit the physical size of the ionized
regions and maximize the signal-to-noise ratio. Thermal noise, foregrounds, and
instrumental effects should also be manageable at this angular scale, as long
as the uv coverage is complete within the compact core required for
low-resolution imaging. For example, we find that z_reion can potentially be
detected to within a redshift uncertainty of less than around 1 in around 500
hours of integration on the existing MWA prototype (with only 32x16 dipoles),
operating at an angular resolution of around 1 degree and a spectral resolution
of 2.4 MHz.Comment: 11 pages, 7 figures. Version published in JCAP (appendix removed,
some clarifications and changes to definitions
Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard
This article presents experimental results on properties of waves propagating
in an unbounded and a bounded photonic crystal consisting of metallic cylinders
which are arranged in a triangular lattice. First, we present transmission
measurements of plane waves traversing a photonic crystal. The experiments are
performed in the vicinity of a Dirac point, i.e., an isolated conical
singularity of the photonic band structure. There, the transmission shows a
pseudodiffusive 1/L dependence, with being the thickness of the crystal, a
phenomenon also observed in graphene. Second, eigenmode intensity distributions
measured in a microwave analog of a relativistic Dirac billiard, a rectangular
microwave billiard that contains a photonic crystal, are discussed. Close to
the Dirac point states have been detected which are localized at the straight
edge of the photonic crystal corresponding to a zigzag edge in graphene
Extent and mechanism of sealing in transected giant axons of squid and earthworms
Transected axons are often assumed to seal at their cut
ends by the formation of continuous membrane barriers that
allow for the restoration of function in the axonal stumps.
We have used several electrophysiological measures (membrane
potential, input resistance, injury current density) and
several morphological measures (phase-contrast, video-enhanced
differential interference contrast, light, and electron
microscopies) of living and fixed material to assess the extent
and mechanism of sealing within hours after transecting
giant axons of squid (Loligo pealeiand Sepioteuthis lessoniana)
and earthworms (Lumbricus terrestris). Our electrophysiological
data suggest that the proximal and distal ends
of transected squid giant axons do not completely seal within
2.5 hr in physiological saline. In contrast, the same set of
measures suggest that proximal and distal ends of transected
earthworm giant axons seal within 1 hr in physiological
saline. Our morphological data show that the cut ends
of both squid and earthworm axons constrict, but that a 20-
70-am-diameter opening always remains at the cut end that
is filled with vesicles. Axonal transection induces the formation
of vesicles that are observed in the axoplasm within
minutes in standard salines and that rapidly migrate to the
cut ends. These injury-induced vesicles are loosely packed
near the cut ends of squid giant axons, which do not functionally
seal within 2.5 hr of transection. In contrast, vesicles
formed a tightly packed plug at the cut ends of earthworm
medial giant axons, which do functionally seal within 1 hr of
transection in physiological saline. Since we detect no single
continuous membrane that spans the cut end, sealing does
not appear to occur by the fusion of constricted axolemmal
membrane or the formation of a membranous partition at the
cut end. Rather, our data are consistent with the hypothesis
that a tightly packed vesicular plug is responsible for sealing
of earthworm giant axons.This work was supported in part by NIH Grant NS31256 and ONR Grant N00014-90-J-1137 to H.M.F., an NIAAA fellowship to T.L.K., and an ATP grant to G.D.B.Neuroscienc
Motivic Milnor fibre for nondegenerate function germs on toric singularities
We study function germs on toric varieties which are nondegenerate for their
Newton diagram. We express their motivic Milnor fibre in terms of their Newton
diagram. We extend a formula for the motivic nearby fibre to the case of a
toroidal degeneration. We illustrate this by some examples.Comment: 14 page
Scattering Experiments with Microwave Billiards at an Exceptional Point under Broken Time Reversal Invariance
Scattering experiments with microwave cavities were performed and the effects
of broken time-reversal invariance (TRI), induced by means of a magnetized
ferrite placed inside the cavity, on an isolated doublet of nearly degenerate
resonances were investigated. All elements of the effective Hamiltonian of this
two-level system were extracted. As a function of two experimental parameters,
the doublet and also the associated eigenvectors could be tuned to coalesce at
a so-called exceptional point (EP). The behavior of the eigenvalues and
eigenvectors when encircling the EP in parameter space was studied, including
the geometric amplitude that builds up in the case of broken TRI. A
one-dimensional subspace of parameters was found where the differences of the
eigenvalues are either real or purely imaginary. There, the Hamiltonians were
found PT-invariant under the combined operation of parity (P) and time reversal
(T) in a generalized sense. The EP is the point of transition between both
regions. There a spontaneous breaking of PT occurs
- …
