1,324 research outputs found
Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008-2013
Abstract
Since 2008, the Study of Environmental Arctic Change Sea Ice Outlook has solicited predictions of September sea-ice extent from the Arctic research community. Individuals and teams employ a variety of modeling, statistical, and heuristic approaches to make these predictions. Viewed as monthly ensembles each with one or two dozen individual predictions, they display a bimodal pattern of success. In years when observed ice extent is near its trend, the median predictions tend to be accurate. In years when the observed extent is anomalous, the median and most individual predictions are less accurate. Statistical analysis suggests that year-to-year variability, rather than methods, dominate the variation in ensemble prediction success. Furthermore, ensemble predictions do not improve as the season evolves. We consider the role of initial ice, atmosphere and ocean conditions, and summer storms and weather in contributing to the challenge of sea-ice prediction. Key Points Analysis of Sea Ice Outlook contributions 2008-2013 shows bimodal success Years when observations depart from trend are hard to predict despite preconditioning Yearly conditions dominate variations in ensemble prediction success
Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008–2013
Since 2008, the Study of Environmental Arctic Change Sea Ice Outlook has solicited predictions of September sea-ice extent from the Arctic research community. Individuals and teams employ a variety of modeling, statistical, and heuristic approaches to make these predictions. Viewed as monthly ensembles each with one or two dozen individual predictions, they display a bimodal pattern of success. In years when observed ice extent is near its trend, the median predictions tend to be accurate. In years when the observed extent is anomalous, the median and most individual predictions are less accurate. Statistical analysis suggests that year-to-year variability, rather than methods, dominate the variation in ensemble prediction success. Furthermore, ensemble predictions do not improve as the season evolves. We consider the role of initial ice, atmosphere and ocean conditions, and summer storms and weather in contributing to the challenge of sea-ice prediction
Fraud Detection from a Business Perspective: Future Directions and Challenges
This contribution summarizes the state of the art of fraud detection in
practice and shows the relations between the technology for fraud detection and
intrusion detection. We identify prospective directions for further investigation
and imminent challenges
Recommended from our members
Rain driven by receding ice sheets as a cause of past climate change
The Younger Dryas cold period, which interrupted the transition from the last ice age to modern conditions in Greenland, is one of the most dramatic incidents of abrupt climate change reconstructed from paleoclimate proxy records. Changes in the Atlantic Ocean overturning circulation in response to freshwater fluxes from melting ice are frequently invoked to explain this and other past climate changes. Here we propose an alternative mechanism in which the receding glacial ice sheets cause the atmospheric circulation to enter a regime with greater net precipitation in the North Atlantic region. This leads to a significant reduction in ocean overturning circulation, causing an increase in sea ice extent and hence colder temperatures. Positive feedbacks associated with sea ice amplify the cooling. We support the proposed mechanism with the results of a state-of-the-art global climate model. Our results suggest that the atmospheric precipitation response to receding glacial ice sheets could have contributed to the Younger Dryas cooling, as well as to other past climate changes involving the ocean overturning circulation
The reversibility of sea ice loss in a state-of-the-art climate model
Rapid Arctic sea ice retreat has fueled speculation about the possibility of threshold (or ‘tipping point’) behavior and irreversible loss of the sea ice cover. We test sea ice reversibility within a state-of-the-art atmosphere–ocean global climate model by increasing atmospheric carbon dioxide until the Arctic Ocean becomes ice-free throughout the year and subsequently decreasing it until the initial ice cover returns. Evidence for irreversibility in the form of hysteresis outside the envelope of natural variability is explored for the loss of summer and winter ice in both hemispheres. We find no evidence of irreversibility or multiple ice-cover states over the full range of simulated sea ice conditions between the modern climate and that with an annually ice-free Arctic Ocean. Summer sea ice area recovers as hemispheric temperature cools along a trajectory that is indistinguishable from the trajectory of summer sea ice loss, while the recovery of winter ice area appears to be slowed due to the long response times of the ocean near the modern winter ice edge. The results are discussed in the context of previous studies that assess the plausibility of sea ice tipping points by other methods. The findings serve as evidence against the existence of threshold behavior in the summer or winter ice cover in either hemisphere
Risk factors associated with hip dislocation following total hip arthroplasty
Scholarly project (M.S.)
Tape that : Einführung in die aktive Videoarbeit
Der Text bietet eine Hilfestellung für technische und gestalterische Fragen der Videoarbeit, indem er filmtechnisches Grundwissen vermittelt und praktische Hinweise zur Arbeit mit der Videokamera und der Schnitttechnik gibt. Außerdem geht er speziell auf die schulische Videoarbeit ein und beschreibt ein Unterrichtsprojekt zur Herstellung eines Zeichentrickfilms
Profiling Finnish Polar Hops - Are They Native And How Do They Look Like?
Posteritiivistelmä on julkaistu Maataloustieteen päivien 2018 Abstraktikirjassa s. 279
http://www.smts.fi/sites/smts.fi/files/MTP2018_Abstraktikirja.pd
- …
