741 research outputs found
Catch-up growth strategies differ between body structures: interactions between age and structure-specific growth in wild nestling Alpine swifts
1. Little is known on the occurrence and magnitude of faster than normal (catch-up) growth in response to periods of undernutrition in the wild, and the extent to which different body structures compensate and over what timescales is poorly understood.
2. We investigated catch-up growth in nestling Alpine Swifts, Apus melba, by comparing nestling growth trajectories in response to a naturally occurring 1-week period of inclement weather and undernutrition with growth of nestlings reared in a good year.
3. In response to undernutrition, nestlings exhibited a hierarchy of tissues preservation and compensation, with body mass being restored quickly after the end of the period of undernutrition, acceleration of skeletal growth occurring later in development, and compensation in wing length occurring mostly due to a prolongation of growth and delayed fledging.
4. The effect of undernutrition and subsequent catch-up growth was age-dependent, with older nestlings being more resilient to undernutrition, and in turn having less need to compensate later in the development.
5. This shows that young in a free-living bird population can compensate in body mass and body size for a naturally occurring period of undernutrition, and that the timing and extent of compensation varies with age and between body structures
Tests of relativity using a microwave resonator
The frequencies of a cryogenic sapphire oscillator and a hydrogen maser are
compared to set new constraints on a possible violation of Lorentz invariance.
We determine the variation of the oscillator frequency as a function of its
orientation (Michelson-Morley test) and of its velocity (Kennedy-Thorndike
test) with respect to a preferred frame candidate. We constrain the
corresponding parameters of the Mansouri and Sexl test theory to and which is equivalent to the best previous result for the
former and represents a 30 fold improvement for the latter.Comment: 8 pages, 2 figures, submitted to Physical Review Letters (October 3,
2002
Programme cantonal diabète dans le canton de Vaud indicateurs pour le suivi et le baromètre : rapport final
Le Programme cantonal Diabète souhaite collecter des indicateurs afin d'objectiver son suivi et produire un Baromètre Diabète Vaud qui serait publié et distribué périodiquement à un public large. Ce rapport présente les indicateurs suggérés par l'IUMSP, mandaté afin d'établir une liste raisonnée d'indicateurs sur le diabète pour le canton de Vaud. La sélection d'indicateurs s'est faite d'après plusieurs critères, parmi lesquels la disponibilité des indicateurs actuelle et à long terme, ainsi que leur pertinence avérée par la littérature. Ce rapport décrit les résultats pour les indicateurs sélectionnés, ainsi que les informations nécessaires à leur compréhension : source, fréquence de mise à disposition, méthode de calcul, limites, références éventuelles. Parmi les indicateurs décrits dans ce rapport, certains sont proposés comme spécialement pertinents à inclure dans le futur Baromètre Diabète Vaud. Aussi, une suggestion de présentation de ces indicateurs (fiches descriptives) est articulée pour ce dernier
Optical fibers with interferometric path length stability by controlled heating for transmission of optical signals and as components in frequency standards
We present a simple method to stabilize the optical path length of an optical
fiber to an accuracy of about 1/100 of the laser wavelength. We study the
dynamic response of the path length to modulation of an electrically conductive
heater layer of the fiber. The path length is measured against the laser
wavelength by use of the Pound-Drever-Hall method; negative feedback is applied
via the heater. We apply the method in the context of a cryogenic resonator
frequency standard.Comment: Expanded introduction and outlook. 9 pages, 5 figure
Making optical atomic clocks more stable with level laser stabilization
The superb precision of an atomic clock is derived from its stability. Atomic
clocks based on optical (rather than microwave) frequencies are attractive
because of their potential for high stability, which scales with operational
frequency. Nevertheless, optical clocks have not yet realized this vast
potential, due in large part to limitations of the laser used to excite the
atomic resonance. To address this problem, we demonstrate a cavity-stabilized
laser system with a reduced thermal noise floor, exhibiting a fractional
frequency instability of . We use this laser as a stable
optical source in a Yb optical lattice clock to resolve an ultranarrow 1 Hz
transition linewidth. With the stable laser source and the signal to noise
ratio (S/N) afforded by the Yb optical clock, we dramatically reduce key
stability limitations of the clock, and make measurements consistent with a
clock instability of
Development of a strontium optical lattice clock for the SOC mission on the ISS
Ultra-precise optical clocks in space will allow new studies in fundamental
physics and astronomy. Within an European Space Agency (ESA) program, the Space
Optical Clocks (SOC) project aims to install and to operate an optical lattice
clock on the International Space Station (ISS) towards the end of this decade.
It would be a natural follow-on to the ACES mission, improving its performance
by at least one order of magnitude. The payload is planned to include an
optical lattice clock, as well as a frequency comb, a microwave link, and an
optical link for comparisons of the ISS clock with ground clocks located in
several countries and continents. Within the EU-FP7-SPACE-2010-1 project no.
263500, during the years 2011-2015 a compact, modular and robust strontium
lattice optical clock demonstrator has been developed. Goal performance is a
fractional frequency instability below 1x10^{-15}, tau^{-1/2} and a fractional
inaccuracy below 5x10^{-17}. Here we describe the current status of the
apparatus' development, including the laser subsystems. Robust preparation of
cold {88}^Sr atoms in a second stage magneto-optical trap (MOT) is achieved.Comment: 27 Pages, 15 figures, Comptes Rendus Physique 201
Proteomics of Syntrophomonas zehnderi and Methanobacterium formicicum growing on long-chain fatty acids
Background: Conversion of long-chain fatty acids (LCFA) in anaerobic digesters relies on syntrophic relationship between acetogenic bacteria and methanogenic archaea. Conversion of unsaturated- and saturated-LCFA has been previously shown by a coculture of Syntrophomonas zehnderi and Methanobacterium formicium. Degradation of unsaturated-LCFA is rare among Syntrophomonas species; the best studied fatty acid oxidizer, S. wolfei, can only grow on saturated-LCFA.
Objectives: Major differences are expected in the pathways and enzymes involved in the degradation of unsaturated-LCFA. In this work we used proteogenomic approach to study these differences.
Methods: A draft genome of S. zehnderi was obtained by Illumina HiSeq sequencing. Genomes of S. zehnderi and S. wolfei (available at NCBI) were compared. S. zehnderi and M. formicicum co-cultures grown on oleate (unsaturated LCFA, C18:1) and on stearate (saturated LCFA, C18:0) were further studied using a proteomics approach.
Conclusions: Genomic comparison of S. zehnderi and S. wolfei revealed approximately 900 different proteins and 1200 common proteins. In the genome of S. zehnderi, two replicates of the unsaturated acyl-CoA dehydrogenase genes were identified, one of which differs considerably from the acyl-CoA gene found in S. wolfei. Proteomic analysis of S. zehnderi and M. formicium co-cultures revealed high expression levels of proteins related to the -oxidation of LCFA (up to 30% of total proteins identified). Different protein expression levels were observed during the degradation of oleate (44% unique proteins) and stearate (23% unique proteins). In addition, proteins involved in electron transfer were highly expressed, including electron transfer flavoproteins, ATP synthases and a number of hydrogenases and formate dehydrogenases
New Limits to the Drift of Fundamental Constants from Laboratory Measurements
We have remeasured the absolute - transition frequency in atomic hydrogen. A comparison with the result of the previous
measurement performed in 1999 sets a limit of Hz for the drift of
with respect to the ground state hyperfine splitting in Cs. Combining this result with the recently published
optical transition frequency in Hg against and a
microwave Rb and Cs clock comparison, we deduce separate limits
on yr and the
fractional time variation of the ratio of Rb and Cs nuclear magnetic moments
equal to
yr. The latter provides information on the temporal behavior of the
constant of strong interaction.Comment: 4 pages, 3 figures, LaTe
Coulomb energy contribution to the excitation energy in Th and enhanced effect of variation
We calculated the contribution of Coulomb energy to the spacing between the
ground and first excited state of Th nucleus as a function of the
deformation parameter . We show that despite the fact that the odd
particle is a neutron, the change in Coulomb energy between these two states
can reach several hundreds KeV.This means that the effect of the variation of
the fine structure constant may be enhanced
times in the 7.6 eV "nuclear clock" transition
between the ground and first excited states in the Th nucleus.Comment: 6 pages,2 figure
- …
