93 research outputs found
The Constraint Interpretation of Physical Emergence
I develop a variant of the constraint interpretation of the emergence of purely physical (non-biological) entities, focusing on the principle of the non-derivability of actual physical states from possible physical states (physical laws) alone. While this is a necessary condition for any account of emergence, it is not sufficient, for it becomes trivial if not extended to types of constraint that specifically constitute physical entities, namely, those that individuate and differentiate them. Because physical organizations with these features are in fact interdependent sets of such constraints, and because such constraints on physical laws cannot themselves be derived from physical laws, physical organization is emergent. These two complementary types of constraint are components of a complete non-reductive physicalism, comprising a non-reductive materialism and a non-reductive formalism
Proteomic and Metabolomic Characteristics of Extremophilic Fungi Under Simulated Mars Conditions
Filamentous fungi have been associated with extreme habitats, including nuclear power plant accident sites and the International Space Station (ISS). Due to their immense adaptation and phenotypic plasticity capacities, fungi may thrive in what seems like uninhabitable niches. This study is the first report of fungal survival after exposure of monolayers of conidia to simulated Mars conditions (SMC). Conidia of several Chernobyl nuclear accident-associated and ISS-isolated strains were tested for UV-C and SMC sensitivity, which resulted in strain-dependent survival. Strains surviving exposure to SMC for 30 min, ISSFT-021-30 and IMV 00236-30, were further characterized for proteomic, and metabolomic changes. Differential expression of proteins involved in ribosome biogenesis, translation, and carbohydrate metabolic processes was observed. No significant metabolome alterations were revealed. Lastly, ISSFT-021-30 conidia re-exposed to UV-C exhibited enhanced UV-C resistance when compared to the conidia of unexposed ISSFT-021
Contributions of Spore Secondary Metabolites to UV-C Protection and Virulence Vary in Different Aspergillus fumigatus Strains
Fungi are versatile organisms which thrive in hostile environments, including the International Space Station (ISS). Several isolates of the human pathogen Aspergillus fumigatus have been found contaminating the ISS, an environment with increased exposure to UV radiation. Secondary metabolites (SMs) in spores, such as melanins, have been shown to protect spores from UV radiation in other fungi. To test the hypothesis that melanin and other known spore SMs provide UV protection to A. fumigatus isolates, we subjected SM spore mutants to UV-C radiation. We found that 1,8-dihydroxynaphthalene (DHN)-melanin mutants of two clinical A. fumigatus strains (Af293 and CEA17) but not an ISS-isolated strain (IF1SW-F4) were more sensitive to UV-C than their respective wild-type (WT) strains. Because DHN-melanin has been shown to shield A. fumigatus from the host immune system, we examined all DHN mutants for virulence in the zebrafish model of invasive aspergillosis. Following recent studies highlighting the pathogenic variability of different A. fumigatus isolates, we found DHN-melanin to be a virulence factor in CEA17 and IF1SW-F4 but not Af293. Three additional spore metabolites were examined in Af293, where fumiquinazoline also showed UV-C-protective properties, but two other spore metabolites, monomethylsulochrin and fumigaclavine, provided no UV-C-protective properties. Virulence tests of these three SM spore mutants indicated a slight increase in virulence of the monomethylsulochrin deletion strain. Taken together, this work suggests differential roles of specific spore metabolites across Aspergillus isolates and by types of environmental stress
Micromagnetic simulation of thickness-dependent magnetization reversal processes in elongated iron nanodots
Abstract
Micromagnetic simulations were used to investigate magnetization reversal processes in elongated ferromagnetic nanodots, prepared by combining two half-circles with a rectangle. The micromagnetic simulation program OOMMF is based on dynamically solving the Landau-Lifshitz-Gilbert equation of motion. Material parameters were chosen as typical for Fe (iron). Lateral dimensions were in most simulations chosen as 730 nm x 133 nm, while the dot height was varied between 3 nm and 54 nm. For different in-plane angles of the external magnetic field, varying magnetization reversal processes were found with changing dot thickness, offering a possibility to tailor magnetic states by modifying the thickness of the nanodot.</jats:p
Linguistic awareness and literacy
This study investigates the hypothesis that the child's initial level of linguistic awareness affects the way in which s/he subsequently learns to read and write. Tests of linguistic awareness were administered to 81 first‐grade students from a school located in an urban fringe area of Rome with post‐assessment after the first year of instruction. Significant relationships emerged across classrooms between initial levels of linguistic awareness and end‐of‐year performance, as well as with home educational factors, The discussion touches on these factors and it concludes with comments on and implications for Italian early childhood education
Metabolomic Analysis of Aspergillus niger Isolated From the International Space Station Reveals Enhanced Production Levels of the Antioxidant Pyranonigrin A
- …
