1,309 research outputs found

    Dynamics of mistuned radial turbine wheels

    Get PDF
    This paper presents investigations carried out at Holset into the dynamics of mistuned radial turbine wheels, including a literature review, a lumped parameter model, identification of the most responsive blade, distribution of the peak maximum order response and a method of mistiming identification

    Exploring wind-driving dust species in cool luminous giants III. Wind models for M-type AGB stars: dynamic and photometric properties

    Full text link
    Stellar winds observed in asymptotic giant branch (AGB) stars are usually attributed to a combination of stellar pulsations and radiation pressure on dust. Shock waves triggered by pulsations propagate through the atmosphere, compressing the gas and lifting it to cooler regions, which create favourable conditions for grain growth. If sufficient radiative acceleration is exerted on the newly formed grains through absorption or scattering of stellar photons, an outflow can be triggered. Strong candidates for wind-driving dust species in M-type AGB stars are magnesium silicates (Mg2_2SiO4_4 and MgSiO3_3). Such grains can form close to the stellar surface, they consist of abundant materials and, if they grow to sizes comparable to the wavelength of the stellar flux maximum, they experience strong acceleration by photon scattering. We use a frequency-dependent radiation-hydrodynamics code with a detailed description for the growth of Mg2_2SiO4_4 grains to calculate the first extensive set of time-dependent wind models for M-type AGB stars. The resulting wind properties, visual and near-IR photometry and mid-IR spectra are compared with observations.We show that the models can produce outflows for a wide range of stellar parameters. We also demonstrate that they reproduce observed mass-loss rates and wind velocities, as well as visual and near-IR photometry. However, the current models do not show the characteristic silicate features at 10 and 18 μ\mum as a result of the cool temperature of Mg2_2SiO4_4 grains in the wind. Including a small amount of Fe in the grains further out in the circumstellar envelope will increase the grain temperature and result in pronounced silicate features, without significantly affecting the photometry in the visual and near-IR wavelength regions.Comment: 11 pages, 14 figure

    Dynamic atmospheres and winds of cool luminous giants, I. Al2_2O3_3 and silicate dust in the close vicinity of M-type AGB stars

    Full text link
    High spatial resolution techniques have given valuable insights into the mass loss mechanism of AGB stars, which presumably involves a combination of atmospheric levitation by pulsation-induced shock waves and radiation pressure on dust. Observations indicate that Al2_2O3_3 condenses at distances of about 2 stellar radii or less, prior to the formation of silicates. Al2_2O3_3 grains are therefore prime candidates for producing the scattered light observed in the close vicinity of several M-type AGB stars, and they may be seed particles for the condensation of silicates at lower temperatures. We have constructed a new generation of Dynamic Atmosphere & Radiation-driven Wind models based on Implicit Numerics (DARWIN), including a time-dependent treatment of grain growth & evaporation for both Al2_2O3_3 and Fe-free silicates (Mg2_2SiO4_4). The equations describing these dust species are solved in the framework of a frequency-dependent radiation-hydrodynamical model for the atmosphere & wind structure, taking pulsation-induced shock waves and periodic luminosity variations into account. Condensation of Al2_2O3_3 at the close distances and in the high concentrations implied by observations requires high transparency of the grains in the visual and near-IR region to avoid destruction by radiative heating. For solar abundances, radiation pressure due to Al2_2O3_3 is too low to drive a wind. Nevertheless, this dust species may have indirect effects on mass loss. The formation of composite grains with an Al2_2O3_3 core and a silicate mantle can give grain growth a head start, increasing both mass loss rates and wind velocities. Furthermore, our experimental core-mantle grain models lead to variations of visual and near-IR colors during a pulsation cycle which are in excellent agreement with observations.Comment: Accepted for publication in Astronomy & Astrophysics (18 pages, 9 figures

    Tomography of silicate dust around M-type AGB stars I. Diagnostics based on dynamical models

    Full text link
    The heavy mass loss observed in evolved asymptotic giant branch stars is usually attributed to a two-step process: atmospheric levitation by pulsation-induced shock waves, followed by radiative acceleration of newly formed dust grains. Detailed wind models suggest that the outflows of M-type AGB stars may be triggered by photon scattering on Fe-free silicates with grain sizes of about 0.1 - 1 μ\mum. Due to the low grain temperature, these Fe-free silicates can condense close to the star, but they do not produce the characteristic mid-IR features that are often observed in M-type AGB stars. However, it is probable that the silicate grains are gradually enriched with Fe as they move away from the star, to a degree where the grain temperature stays below the sublimation temperature, but is high enough to produce emission features. We investigate whether differences in grain temperature in the inner wind region, which are related to changes in the grain composition, can be detected with current interferometric techniques, in order to put constraints on the wind mechanism. To investigate this we use radial structures of the atmosphere and wind of an M-type AGB star, produced with the 1D radiation-hydrodynamical code DARWIN. The spectral energy distribution is found to be a poor indicator of different temperature profiles and therefore is not a good tool for distinguishing different scenarios of changing grain composition. However, spatially resolved interferometric observations have promising potential. They show signatures even for Fe-free silicates (found at 2-3 stellar radii), in contrast to the spectral energy distribution. Observations with baselines that probe spatial scales of about 4 stellar radii and beyond are suitable for tracing changes in grain composition, since this is where effects of Fe enrichment should be found.Comment: Accepted for publication in Section 8. Stellar atmospheres of Astronomy and Astrophysics. The official date of acceptance is 07/09/2017. 9 pages, 7 figures, 4 figures in appendi

    Exploring wind-driving dust species in cool luminous giants II. Constraints from photometry of M-type AGB stars

    Full text link
    The heavy mass loss observed in evolved asymptotic giant branch (AGB) stars is usually attributed to a two-stage process: atmospheric levitation by pulsation-induced shock waves, followed by radiative acceleration of newly formed dust grains. The dust transfers momentum to the surrounding gas through collisions and thereby triggers a general outflow. Radiation-hydrodynamical models of M-type AGB stars suggest that these winds can be driven by photon scattering -- in contrast to absorption -- on Fe-free silicate grains of sizes 0.1--1\,μ\mum. In this paper we study photometric constraints for wind-driving dust species in M-type AGB stars, as part of an ongoing effort to identify likely candidates among the grain materials observed in circumstellar envelopes. To investigate the scenario of stellar winds driven by photon scattering on dust, and to explore how different optical and chemical properties of wind-driving dust species affect photometry we focus on two sets of dynamical models atmospheres: (i) models using a detailed description for the growth of Mg2_2SiO4_4 grains, taking into account both scattering and absorption cross-sections when calculating the radiative acceleration, and (ii) models using a parameterized dust description, constructed to represent different chemical and optical dust properties. By comparing synthetic photometry from these two sets of models to observations of M-type AGB stars we can provide constraints on the properties of wind-driving dust species. Photometry from wind models with a detailed description for the growth of Mg2_2SiO4_4 grains reproduces well both the values and the time-dependent behavior of observations of M-type AGB stars, providing further support for the scenario of winds driven by photon scattering on dust.Comment: Accepted for publication in A&A. 15 pages, 14 figure

    Modelling polarized light from dust shells surrounding asymptotic giant branch stars

    Full text link
    Winds of asymptotic giant branch (AGB) stars are commonly assumed to be driven by radiative acceleration of dust grains. For M-type AGB stars, the nature of the wind-driving dust species has been a matter of intense debate. A proposed source of the radiation pressure triggering the outflows is photon scattering on Fe-free silicate grains. This wind-driving mechanism requires grain radii of about 0.1 - 1 micron in order to make the dust particles efficient at scattering radiation around the stellar flux maximum. Grain size is therefore an important parameter for understanding the physics behind the winds of M-type AGB stars. We seek to investigate the diagnostic potential of scattered polarized light for determining dust grain sizes. We have developed a new tool for computing synthetic images of scattered light in dust and gas shells around AGB stars, which can be applied to detailed models of dynamical atmospheres and dust-driven winds. We present maps of polarized light using dynamical models computed with the DARWIN code. The synthetic images clearly show that the intensity of the polarized light, the position of the inner edge of the dust shell, and the size of the dust grains near the inner edge are all changing with the luminosity phase. Non-spherical structures in the dust shells can also have an impact on the polarized light. We simulate this effect by combining different pulsation phases into a single 3D structure before computing synthetic images. An asymmetry of the circumstellar envelope can create a net polarization, which can be used as diagnostics for the grain size. The ratio between the size of the scattering particles and the observed wavelength determines at what wavelengths net polarization switches direction. If observed, this can be used to constrain average particle sizes.Comment: 9 page

    Atmospheres and wind properties of non-spherical AGB stars

    Full text link
    The wind-driving mechanism of asymptotic giant branch (AGB) stars is commonly attributed to a two-step process: first, gas in the stellar atmosphere is levitated by shockwaves caused by stellar pulsation, then accelerated outwards by radiative pressure on newly formed dust, inducing a wind. Dynamical modelling of such winds usually assumes a spherically symmetric star. We explore the potential consequences of complex stellar surface structures, as predicted by three-dimensional (3D) star-in-a-box modelling of M-type AGB stars, on the resulting wind properties with the aim to improve the current wind models. Two different modelling approaches are used; the CO5^5BOLD 3D star-in-a-box code to simulate the convective, pulsating interior and lower atmosphere of the star, and the DARWIN one-dimensional (1D) code to describe the dynamical atmosphere where the wind is accelerated. The gas dynamics of the inner atmosphere region at distances of R12RR\sim1-2R_\star, which both modelling approaches simulate, are compared. Dynamical properties and luminosity variations derived from CO5^5BOLD interior models are used as input for the inner boundary in DARWIN wind models in order to emulate the effects of giant convection cells and pulsation, and explore their influence on the dynamical properties. The CO5^5BOLD models are inherently anisotropic, with non-uniform shock fronts and varying luminosity amplitudes, in contrast to the spherically symmetrical DARWIN wind models. DARWIN wind models with CO5^5BOLD-derived inner boundary conditions produced wind velocities and mass-loss rates comparable to the standard DARWIN models, however the winds show large density variations on time-scales of 10-20 years.Comment: 13 pages, 12 figures, Accepted for publication in A&

    An extensive grid of DARWIN models for M-type AGB stars I. Mass-loss rates and other properties of dust-driven winds

    Full text link
    The purpose of this work is to present an extensive grid of dynamical atmosphere and wind models for M-type AGB stars, covering a wide range of relevant stellar parameters. We used the DARWIN code, which includes frequency-dependent radiation-hydrodynamics and a time-dependent description of dust condensation and evaporation, to simulate the dynamical atmosphere. The wind-driving mechanism is photon scattering on submicron-sized Mg2_2SiO4_4 grains. The grid consists of 4000\sim4000 models, with luminosities from L=890LL_\star=890\,{\mathrm{L}}_\odot to L=40000LL_\star=40000\,{\mathrm{L}}_\odot and effective temperatures from 2200K to 3400K. For the first time different current stellar masses are explored with M-type DARWIN models, ranging from 0.75M_\odot to 3M_\odot. The modelling results are radial atmospheric structures, dynamical properties such as mass-loss rates and wind velocities, and dust properties (e.g. grain sizes, dust-to-gas ratios, and degree of condensed Si). We find that the mass-loss rates of the models correlate strongly with luminosity. They also correlate with the ratio L/ML_*/M_*: increasing L/ML_*/M_* by an order of magnitude increases the mass-loss rates by about three orders of magnitude, which may naturally create a superwind regime in evolution models. There is, however, no discernible trend of mass-loss rate with effective temperature, in contrast to what is found for C-type AGB stars. We also find that the mass-loss rates level off at luminosities higher than 14000L\sim14000\,{\mathrm{L}}_\odot, and consequently at pulsation periods longer than 800\sim800 days. The final grain radii range from 0.25 micron to 0.6 micron. The amount of condensed Si is typically between 10% and 40%, with gas-to-dust mass ratios between 500 and 4000.Comment: Accepted to A&A, 17 pages, 15 figure

    Redskap som redskap ­ En undersökning av redskapsgymnastikens stimulans på sensomotorisk utveckling

    Get PDF
    Inledning Människans motoriska utveckling är en livslång process som börjar i fosterstadiet och pågår livet ut. Kroppen är byggd för rörelse. Vävnader och olika funktioner anpassar sig till de krav som ställts på dem. Fysisk aktivitet är av stor vikt för barnets utveckling. Genom rörelse lär barnet känna sin omgivning, sig själv och dess plats i världen runt omkring. Barnet utvecklas genom att ständigt möta nya situationer där det krävs att dess färdigheter utmanas, vilket bidrar till inlärning och således utveckling. Redskapsgymnastiken medverkar till att utveckla många kvaliteter såsom grov- och finmotorik, visuell och auditiv perception, personlighetsutveckling, begreppsbildning och kroppsuppfattning. Syfte Arbetet syftar till att undersöka i vilken omfattning redskapsgymnastik används i undervisningen i ämnet idrott och hälsa. Vi vill dessutom belysa vilka positiva effekter redskapsgymnastiken kan ha på barns motoriska och sensoriska utveckling. Metod För att ta reda på i vilken omfattning redskapsgymnastik förekommer i ämnet idrott och hälsa för de lägre åldrarna har vi gjort en enkätundersökning bland idrottslärare på låg- och mellanstadiet. Litteraturstudier av tidigare forskning i ämnet motorisk inlärning och utveckling har legat till grund för att belysa de positiva effekterna av redskapsgymnastik. Resultat Alla enkätrespondenter använder sig av redskapsgymnastik i sin idrottsundervisning. Samtliga är också överens om att redskapsgymnastik stimulerar sensomotorisk utveckling. Diskussion Genom redskapsgymnastiken tränas de grovmotoriska rörelserna. Den motoriska utvecklingen är av stor vikt då det gäller barns totala utveckling och inlärning. Barn är särskilt mottagliga för nya rörelser och för att underlätta framtida utveckling bör de ges möjlighet till motorisk stimulans i tidig ålder. Idrottslärarens kompetens har stor betydelse då det är viktigt att barn tillåts leka och röra på sig dagligen. Ämnet idrott och hälsa bör därför ges större utrymme i skolan.
    corecore