60 research outputs found
Results from the Relativistic Heavy Ion Collider
We describe the current status of the heavy ion research program at the
Relativistic Heavy Ion Collider (RHIC). The new suite of experiments and the
collider energies have opened up new probes of the medium created in the
collisions. Our review focuses on the experimental discoveries to date at RHIC
and their interpretation in the light of our present theoretical understanding
of the dynamics of relativistic heavy ion collisions and of the structure of
strongly interacting matter at high energy density.Comment: 47 pages, 10 figures, submitted to Annual Review of Nuclear and
Particle Science. The authors invite and appreciate feedback about possible
errors and/or inconsistencies in the manuscrip
On thermodynamics of N=6 superconformal Chern-Simons theory
We study thermodynamics of N=6 superconformal Chern-Simons theory by
computing quantum corrections to the free energy. We find that in weakly
coupled ABJM theory on R(2) x S(1), the leading correction is non-analytic in
the 't Hooft coupling lambda, and is approximately of order lambda^2
log(lambda)^3. The free energy is expressed in terms of the scalar thermal mass
m, which is generated by screening effects. We show that this mass vanishes to
1-loop order. We then go on to 2-loop order where we find a finite and positive
mass squared m^2. We discuss differences in the calculation between Coulomb and
Lorentz gauge. Our results indicate that the free energy is a monotonic
function in lambda which interpolates smoothly to the N^(3/2) behaviour at
strong coupling.Comment: 29 pages. v2: references added. v3: minor changes, references added,
published versio
Recent developments of the Hierarchical Reference Theory of Fluids and its relation to the Renormalization Group
The Hierarchical Reference Theory (HRT) of fluids is a general framework for
the description of phase transitions in microscopic models of classical and
quantum statistical physics. The foundations of HRT are briefly reviewed in a
self-consistent formulation which includes both the original sharp cut-off
procedure and the smooth cut-off implementation, which has been recently
investigated. The critical properties of HRT are summarized, together with the
behavior of the theory at first order phase transitions. However, the emphasis
of this presentation is on the close relationship between HRT and non
perturbative renormalization group methods, as well as on recent
generalizations of HRT to microscopic models of interest in soft matter and
quantum many body physics.Comment: 17 pages, 5 figures. Review paper to appear in Molecular Physic
JIMWLK evolution in the Gaussian approximation
We demonstrate that the Balitsky-JIMWLK equations describing the high-energy
evolution of the n-point functions of the Wilson lines (the QCD scattering
amplitudes in the eikonal approximation) admit a controlled mean field
approximation of the Gaussian type, for any value of the number of colors Nc.
This approximation is strictly correct in the weak scattering regime at
relatively large transverse momenta, where it reproduces the BFKL dynamics, and
in the strong scattering regime deeply at saturation, where it properly
describes the evolution of the scattering amplitudes towards the respective
black disk limits. The approximation scheme is fully specified by giving the
2-point function (the S-matrix for a color dipole), which in turn can be
related to the solution to the Balitsky-Kovchegov equation, including at finite
Nc. Any higher n-point function with n greater than or equal to 4 can be
computed in terms of the dipole S-matrix by solving a closed system of
evolution equations (a simplified version of the respective Balitsky-JIMWLK
equations) which are local in the transverse coordinates. For simple
configurations of the projectile in the transverse plane, our new results for
the 4-point and the 6-point functions coincide with the high-energy
extrapolations of the respective results in the McLerran-Venugopalan model. One
cornerstone of our construction is a symmetry property of the JIMWLK evolution,
that we notice here for the first time: the fact that, with increasing energy,
a hadron is expanding its longitudinal support symmetrically around the
light-cone. This corresponds to invariance under time reversal for the
scattering amplitudes.Comment: v2: 45 pages, 4 figures, various corrections, section 4.4 updated, to
appear in JHE
Non-perturbative computation of double inclusive gluon production in the Glasma
The near-side ridge observed in A+A collisions at RHIC has been described as
arising from the radial flow of Glasma flux tubes formed at very early times in
the collisions. We investigate the viability of this scenario by performing a
non-perturbative numerical computation of double inclusive gluon production in
the Glasma. Our results support the conjecture that the range of transverse
color screening of correlations determining the size of the flux tubes is a
semi-hard scale, albeit with non-trivial structure. We discuss our results in
the context of ridge correlations in the RHIC heavy ion experiments.Comment: 25 pages, 11 figures, uses JHEP3.cls V2: small clarifications,
published in JHE
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
Viscosity Sum Rules at Large Scattering Lengths
We use the operator product expansion (OPE) and dispersion relations to
obtain new model-independent "Borel-resummed" sum rules for both shear and bulk
viscosity of many-body systems of spin-1/2 fermions with predominantly short
range S-wave interactions. These sum rules relate Gaussian weights of the
frequency-dependent viscosities to the Tan contact parameter C(a). Our results
are valid for arbitrary values of the scattering length a, but receive small
corrections from operators of dimension larger than 5 in the OPE, and can be
used to study transport properties in the vicinity of the infinite scattering
length fixed point. In particular, we find that the exact dependence of the
shear viscosity sum rule on scattering length is controlled by the function
C(a). The sum rules that we obtain depend on a frequency scale w that can be
optimized to maximize their overlap with low-energy data
A model study of quark number susceptibility at finite temperature beyond rainbow-ladder approximation
In this paper we calculate the quark number susceptibility (QNS) of QCD at
finite temperature under the rainbow-ladder and Ball-Chiu type truncation
schemes of the Dyson-Schwinger approach. It is found that the difference
between the result of the rainbow-ladder truncation and that of Ball-Chiu type
truncation is small, which shows that the dressing effect of the quark-gluon
vertex on the QNS at finite temperature is small. It is also found that at low
temperature the quark number susceptibility is nearly zero and it increases
sharply when the temperature approaches the chiral phase transition point. A
comparison between the result in the present paper with those in the literature
is made.Comment: 17 pages, 6 figure
- …
