16,931 research outputs found
Laboratory millimeter and submillimeter spectrum of HOC^+
The J = 1→2, 2→3, and 3→4 rotational transitions of the molecular ion HOC^+ have been measured in the laboratory at frequencies from 178 to 358 GHz. The data should permit astronomers to confirm the recent possible sighting of the J = 1→0 transition of HOC^+ in Sgr B2 at 89.5 GHz
The laboratory millimeter-wave spectrum of methyl formate in its ground torsional E state
Over 250 rotational transitions of the internal rotor methyl formate (HCOOCH_3) in its ground v_t = 0 degenerate (E) torsional substate have been measured in the millimeter-wave spectral region. These data and a number of E-state lines identified by several other workers have been analyzed using an extension of the classical principal-axis method in the high barrier limit. The resulting rotational constants allow accurate prediction of the v_t = 0 E substate methyl formate spectrum below 300 GHz between states with angular momentum J ≤ 30 and rotational energy E_(rot)≤ 350cm^(-1). The calculated transition frequencies for the E state, when combined with the results of the previous analysis of the ground-symmetric, nondegenerate state, account for over 200 of the emission lines observed toward Orion in a recent survey of the 215-265 GHz band
Steps towards a map of the nearby universe
We present a new analysis of the Sloan Digital Sky Survey data aimed at
producing a detailed map of the nearby (z < 0.5) universe. Using neural
networks trained on the available spectroscopic base of knowledge we derived
distance estimates for about 30 million galaxies distributed over ca. 8,000 sq.
deg. We also used unsupervised clustering tools developed in the framework of
the VO-Tech project, to investigate the possibility to understand the nature of
each object present in the field and, in particular, to produce a list of
candidate AGNs and QSOs.Comment: 3 pages, 1 figure. To appear in Nucl Phys. B, in the proceedings of
the NOW-2006 (Neutrino Oscillation Workshop - 2006), R. Fogli et al. ed
Effects of mixing on evolution of hydrocarbon ratios in the troposphere
Nonmethane hydrocarbon (NMHC) concentration ratios provide useful indicators of tropospheric oxidation and transport processes. However, the influences of both photochemical and mixing processes are inextricably linked in the evolution of these ratios. We present a model for investigating these influences by combining the transport treatment of the Lagrangian particle dispersion model FLEXPART with an ultrasimple (i.e., constant OH concentration) chemical treatment. Required model input includes NMHC emission ratios, but not ad hoc assumed background NMHC concentrations. The model results give NMHC relationships that can be directly compared, in a statistical manner, with measurements. The measured concentration ratios of the longest-lived alkanes show strong deviations from purely kinetic behavior, which the model nicely reproduces. In contrast, some measured aromatic ratio relationships show even stronger deviations that are not well reproduced by the model for reasons that are not understood. The model-measurement comparisons indicate that the interaction of mixing and photochemical processing prevent a simple interpretation of "photochemical age," but that the average age of any particular NMHC can be well defined and can be approximated by a properly chosen and interpreted NMHC ratio. In summary, the relationships of NMHC concentration ratios not only yield useful measures of photochemical processing in the troposphere, but also provide useful test of the treatment of mixing and chemical processing in chemical transport models. Copyright 2007 by the American Geophysical Union
The millimeter and submillimeter laboratory spectrum of methyl formate in its ground symmetric torsional state
Over 200 rotational lines of methyl formate in its ground (v-t = 0), symmetric (A) torsional state have been measured in the frequency range 140-550 GHz. Analysis of these and lower frequency transitions permits accurate prediction (≤0.1 MHz) of over 10,000 transitions at frequencies below 600 GHz with angular momentum J ≤ 50. The measured spectral lines have permitted identification of over 100 new methyl formate lines in Orion
Water production in comet 81P/Wild 2 as determined by Herschel/HIFI
The high spectral resolution and sensitivity of Herschel/HIFI allows for the detection of multiple rotational water lines and accurate determinations
of water production rates in comets. In this Letter we present HIFI observations of the fundamental 1_(10)–1_(01) (557 GHz) ortho and 1_(11)–0_(00)
(1113 GHz) para rotational transitions of water in comet 81P/Wild 2 acquired in February 2010. We mapped the extent of the water line emission
with five point scans. Line profiles are computed using excitation models which include excitation by collisions with electrons and neutrals and
solar infrared radiation. We derive a mean water production rate of 1.0 × 10^(28) molecules s^(−1) at a heliocentric distance of 1.61 AU about 20 days
before perihelion, in agreement with production rates measured from the ground using observations of the 18-cm OH lines. Furthermore, we
constrain the electron density profile and gas kinetic temperature, and estimate the coma expansion velocity by fitting the water line shapes
Spatially Resolved Spectroscopy of the E+A Galaxies in the z=0.32 Cluster AC114
We present spatially resolved intermediate resolution spectroscopy of a
sample of twelve E+A galaxies in the z=0.32 rich galaxy cluster AC 114,
obtained with the FLAMES multi-integral field unit system on the European
Southern Observatory's VLT. Previous integrated spectroscopy of all these
galaxies by Couch & Sharples (1987) had shown them to have strong Balmer line
absorption and an absence of [OII 3727] emission -- the defining
characteristics of the``E+A'' spectral signature, indicative of an abrupt halt
to a recent episode of quite vigorous star formation. We have used our spectral
data to determine the radial variation in the strength of Hdelta absorption in
these galaxies and hence map out the distribution of this recently formed
stellar population. Such information provides important clues as to what
physical event might have been responsible for this quite dramatic change in
star formation activity in these galaxies' recent past. We find a diversity of
behaviour amongst these galaxies in terms of the radial variation in Hdelta
absorption: Four galaxies show little Hdelta absorption across their entire
extent; it would appear they were misidentified as E+A galaxies in the earlier
integrated spectroscopic studies. The remainder show strong Hdelta absorption,
with a gradient that is either negative (Hdelta equivalent width decreasing
with radius), flat, or positive. By comparing with numerical simulations we
suggest that the first of these different types of radial behaviour provides
evidence for a merger/interaction origin, whereas the latter two types of
behaviour are more consistent with the truncation of star formation in normal
disk galaxies. It would seem therefore that more than one physical mechanism is
responsible for E+A formation in the same environment.Comment: 15 pages, 10 figures, accepted MNRA
Spreading Dynamics of Polymer Nanodroplets
The spreading of polymer droplets is studied using molecular dynamics
simulations. To study the dynamics of both the precursor foot and the bulk
droplet, large drops of ~200,000 monomers are simulated using a bead-spring
model for polymers of chain length 10, 20, and 40 monomers per chain. We
compare spreading on flat and atomistic surfaces, chain length effects, and
different applications of the Langevin and dissipative particle dynamics
thermostats. We find diffusive behavior for the precursor foot and good
agreement with the molecular kinetic model of droplet spreading using both flat
and atomistic surfaces. Despite the large system size and long simulation time
relative to previous simulations, we find no evidence of hydrodynamic behavior
in the spreading droplet.Comment: Physical Review E 11 pages 10 figure
Multiyear trends in volatile organic compounds in Los Angeles, California: Five decades of decreasing emissions
HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification
Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.</jats:p
- …
