480 research outputs found

    Quantification of Plasma and Urine Thymidine and 2'-Deoxyuridine by LC-MS/MS for the Pharmacodynamic Evaluation of Erythrocyte Encapsulated Thymidine Phosphorylase in Patients with Mitochondrial Neurogastrointestinal Encephalomyopathy.

    Get PDF
    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disorder caused by mutations in TYMP, leading to a deficiency in thymidine phosphorylase and a subsequent systemic accumulation of thymidine and 2'-deoxyuridine. Erythrocyte-encapsulated thymidine phosphorylase (EE-TP) is under clinical development as an enzyme replacement therapy for MNGIE. Bioanalytical methods were developed according to regulatory guidelines for the quantification of thymidine and 2'-deoxyuridine in plasma and urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for supporting the pharmacodynamic evaluation of EE-TP. Samples were deproteinized with 5% perchloric acid (v/v) and the supernatants analyzed using a Hypercarb column (30 × 2.1 mm, 3 µm), with mobile phases of 0.1% formic acid in methanol and 0.1% formic acid in deionized water. Detection was conducted using an ion-spray interface running in positive mode. Isotopically labelled thymidine and 2'-deoxyuridine were used as internal standards. Calibration curves for both metabolites showed linearity (r > 0.99) in the concentration ranges of 10-10,000 ng/mL for plasma, and 1-50 µg/mL for urine, with method analytical performances within the acceptable criteria for quality control samples. The plasma method was successfully applied to the diagnosis of two patients with MNGIE and the quantification of plasma metabolites in three patients treated with EE-TP

    Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease

    Get PDF
    Polyglutamine diseases are a class of dominantly inherited neurodegenerative disorders for which there is no effective treatment. Here we provide evidence that activation of serotonergic signalling is beneficial in animal models of Machado-Joseph disease. We identified citalopram, a selective serotonin reuptake inhibitor, in a small molecule screen of FDA-approved drugs that rescued neuronal dysfunction and reduced aggregation using a Caenorhabditis elegans model of mutant ataxin 3-induced neurotoxicity. MOD-5, the C. elegans orthologue of the serotonin transporter and cellular target of citalopram, and the serotonin receptors SER-1 and SER-4 were strong genetic modifiers of ataxin 3 neurotoxicity and necessary for therapeutic efficacy. Moreover, chronic treatment of CMVMJD135 mice with citalopram significantly reduced ataxin 3 neuronal inclusions and astrogliosis, rescued diminished body weight and strikingly ameliorated motor symptoms. These results suggest that small molecule modulation of serotonergic signalling represents a promising therapeutic target for Machado-Joseph disease.This work was supported by Fundação para a Ciência e Tecnologia (FCT) and COMPETE through the projects ‘[PTDC/SAU-GMG/112617/2009] (to P.M.) and [EXPL/ BIM-MEC/0239/2012] (to A.T.C.)’, by National Ataxia foundation (to P.M.), by Ataxia UK (to P.M.), by National Institutes of Health (NIH) ‘[GM038109, GM081192, AG026647, and NS047331] (to R.I.M.)’, by The Chicago Biomedical Consortium (to R.I.M.) and by the Ellison Medical Foundation (to R.I.M.). A.T.C., A.J., S.E., L.S.S., C.B., S.D.S., A.S.F. and A.N.C. were supported by the FCT individual fellowships SFRH/BPD/79469/2011, SFRH/BD/76613/2011, SFRH/BD/78554/2011, SFRH/BD/ 84650/2012, SFRH/BPD/74452/2010, SFRH/BD/78388/ 2011, SFRH/BPD/91562/2012 and SFRH/BD/51059/2010, respectively. FCT fellowships are co-financed by POPH, QREN, Governo da República Portuguesa and EU/FSE.info:eu-repo/semantics/publishedVersio

    A novel MT-CO2 variant causing cerebellar ataxia and neuropathy: The role of muscle biopsy in diagnosis and defining pathogenicity

    Get PDF
    Pathogenic variants in mitochondrial DNA (mtDNA) are associated with significant clinical heterogeneity with neuromuscular involvement commonly reported. Non-syndromic presentations of mtDNA disease continue to pose a diagnostic challenge and with genomic testing still necessitating a muscle biopsy in many cases. Here we describe an adult patient who presented with progressive ataxia, neuropathy and exercise intolerance in whom the application of numerous Mendelian gene panels had failed to make a genetic diagnosis. Muscle biopsy revealed characteristic mitochondrial pathology (cytochrome c oxidase deficient, ragged-red fibers) prompting a thorough investigation of the mitochondrial genome. Two heteroplasmic MT-CO2 gene variants (NC_012920.1: m.7887G>A and m.8250G>A) were identified, necessitating single fiber segregation and familial studies – including the biopsy of the patient's clinically-unaffected mother - to demonstrate pathogenicity of the novel m.7887G>A p.(Gly101Asp) variant and establishing this as the cause of the mitochondrial biochemical defects and clinical presentation. In the era of high throughput whole exome and genome sequencing, muscle biopsy remains a key investigation in the diagnosis of patients with non-syndromic presentations of adult-onset mitochondrial disease and fully defining the pathogenicity of novel mtDNA variants

    A Novel Pathogenic Variant in MT-CO2 Causes an Isolated Mitochondrial Complex IV Deficiency and Late-Onset Cerebellar Ataxia

    Get PDF
    Both nuclear and mitochondrial DNA defects can cause isolated cytochrome c oxidase (COX; complex IV) deficiency, leading to the development of the mitochondrial disease. We report a 52-year-old female patient who presented with a late-onset, progressive cerebellar ataxia, tremor and axonal neuropathy. No family history of neurological disorder was reported. Although her muscle biopsy demonstrated a significant COX deficiency, there was no clinical and electromyographical evidence of myopathy. Electrophysiological studies identified low frequency sinusoidal postural tremor at 3 Hz, corroborating the clinical finding of cerebellar dysfunction. Complete sequencing of the mitochondrial DNA genome in muscle identified a novel MT-CO2 variant, m.8163A>G predicting p.(Tyr193Cys). We present several lines of evidence, in proving the pathogenicity of this heteroplasmic mitochondrial DNA variant, as the cause of her clinical presentation. Our findings serve as an important reminder that full mitochondrial DNA analysis should be included in the diagnostic pipeline for investigating individuals with spinocerebellar ataxi

    A recessive homozygous p.Asp92Gly SDHD mutation causes prenatal cardiomyopathy and a severe mitochondrial complex II deficiency

    Get PDF
    Succinate dehydrogenase (SDH) is a crucial metabolic enzyme complex that is involved in ATP production, playing roles in both the tricarboxylic cycle and the mitochondrial respiratory chain (complex II). Isolated complex II deficiency is one of the rarest oxidative phosphorylation disorders with mutations described in three structural subunits and one of the assembly factors; just one case is attributed to recessively inherited SDHD mutations. We report the pathological, biochemical, histochemical and molecular genetic investigations of a male neonate who had left ventricular hypertrophy detected on antenatal scan and died on day one of life. Subsequent postmortem examination confirmed hypertrophic cardiomyopathy with left ventricular non-compaction. Biochemical analysis of his skeletal muscle biopsy revealed evidence of a severe isolated complex II deficiency and candidate gene sequencing revealed a novel homozygous c.275A>G, p.(Asp92Gly) SDHD mutation which was shown to be recessively inherited through segregation studies. The affected amino acid has been reported as a Dutch founder mutation p.(Asp92Tyr) in families with hereditary head and neck paraganglioma. By introducing both mutations into Saccharomyces cerevisiae, we were able to confirm that the p.(Asp92Gly) mutation causes a more severe oxidative growth phenotype than the p.(Asp92Tyr) mutant, and provides functional evidence to support the pathogenicity of the patient’s SDHD mutation. This is only the second case of mitochondrial complex II deficiency due to inherited SDHD mutations and highlights the importance of sequencing all SDH genes in patients with biochemical and histochemical evidence of isolated mitochondrial complex II deficiency

    Life and living in advanced age: a cohort study in New Zealand - Te Puāwaitanga o Nga Tapuwae Kia Ora Tonu, LiLACS NZ: Study protocol

    Get PDF
    The number of people of advanced age (85 years and older) is increasing and health systems may be challenged by increasing health-related needs. Recent overseas evidence suggests relatively high levels of wellbeing in this group, however little is known about people of advanced age, particularly the indigenous Māori, in Aotearoa, New Zealand. This paper outlines the methods of the study Life and Living in Advanced Age: A Cohort Study in New Zealand. The study aimed to establish predictors of successful advanced ageing and understand the relative importance of health, frailty, cultural, social & economic factors to successful ageing for Māori and non-Māori in New Zealand

    Open GLAM: The Rewards (and Some Risks) of Digital Sharing for the Public Good:in Andrea Wallace and Ronan Deazley, eds, Display At Your Own Risk: An experimental exhibition of digital cultural heritage, 2016.

    Get PDF
    The research-led exhibition experiment Display at Your Own Risk (Wallace and Deazley 2016) provides an exciting opportunity to ask some fundamental questions regarding the behavioural gaps between ‘what we say’ and ‘what we do’ in regard to museum practice and with art/images. Sometimes this is driven, as the exhibition organizers point out, by the gap between institutional policies and public understanding. By selecting 100 digital surrogate images of public domain works for this exhibition and printing them to the underlying artwork’s original dimensions this exhibition poses some interesting questions

    Identification of a novel heterozygous guanosine monophosphate reductase (GMPR) variant in a patient with a late-onset disorder of mitochondrial DNA maintenance

    Get PDF
    Autosomal dominant progressive external ophthalmoplegia (adPEO) is a late-onset, Mendelian mitochondrial disorder characterised by paresis of the extraocular muscles, ptosis and skeletal-muscle restricted multiple mitochondrial DNA (mtDNA) deletions. While dominantly-inherited, pathogenic variants in POLG, TWNK and RRM2B are among the most common genetic defects of adPEO, identification of novel candidate genes and the underlying pathomechanisms remain challenging. We report the clinical, genetic and molecular investigations of a patient who presented in the seventh decade of life with PEO. Oxidative histochemistry revealed cytochrome c oxidase deficient fibres and occasional ragged red fibres showing subsarcolemmal mitochondrial accumulation in skeletal muscle, while molecular studies identified the presence of multiple mtDNA deletions. Negative candidate screening of known nuclear genes associated with PEO prompted diagnostic exome sequencing, leading to the prioritisation of a novel heterozygous c.547G > C variant in GMPR (NM_006877.3) encoding guanosine monophosphate reductase, a cytosolic enzyme required for maintaining the cellular balance of adenine and guanine nucleotides. We show that the novel c.547G > C variant causes aberrant splicing, decreased GMPR protein levels in patient skeletal muscle, proliferating and quiescent cells and is associated with subtle changes in nucleotide homeostasis protein levels and evidence of disturbed mtDNA maintenance in skeletal muscle. Despite confirmation of GMPR deficiency, demonstrating marked defects of mtDNA replication or nucleotide homeostasis in patient cells proved challenging. Our study proposes that GMPR is the nineteenth (19th) locus for PEO and highlights the complexities of uncovering disease mechanisms in late-onset PEO phenotypes
    corecore