230 research outputs found
The AFLOW Fleet for Materials Discovery
The traditional paradigm for materials discovery has been recently expanded
to incorporate substantial data driven research. With the intent to accelerate
the development and the deployment of new technologies, the AFLOW Fleet for
computational materials design automates high-throughput first principles
calculations, and provides tools for data verification and dissemination for a
broad community of users. AFLOW incorporates different computational modules to
robustly determine thermodynamic stability, electronic band structures,
vibrational dispersions, thermo-mechanical properties and more. The AFLOW data
repository is publicly accessible online at aflow.org, with more than 1.7
million materials entries and a panoply of queryable computed properties. Tools
to programmatically search and process the data, as well as to perform online
machine learning predictions, are also available.Comment: 14 pages, 8 figure
Uniparental markers of contemporary Italian population reveals details on its pre-Roman heritage.
BACKGROUND: According to archaeological records and historical documentation, Italy has been a melting point for populations of different geographical and ethnic matrices. Although Italy has been a favorite subject for numerous population genetic studies, genetic patterns have never been analyzed comprehensively, including uniparental and autosomal markers throughout the country.
METHODS/PRINCIPAL FINDINGS: A total of 583 individuals were sampled from across the Italian Peninsula, from ten distant (if homogeneous by language) ethnic communities--and from two linguistic isolates (Ladins, Grecani Salentini). All samples were first typed for the mitochondrial DNA (mtDNA) control region and selected coding region SNPs (mtSNPs). This data was pooled for analysis with 3,778 mtDNA control-region profiles collected from the literature. Secondly, a set of Y-chromosome SNPs and STRs were also analyzed in 479 individuals together with a panel of autosomal ancestry informative markers (AIMs) from 441 samples. The resulting genetic record reveals clines of genetic frequencies laid according to the latitude slant along continental Italy--probably generated by demographical events dating back to the Neolithic. The Ladins showed distinctive, if more recent structure. The Neolithic contribution was estimated for the Y-chromosome as 14.5% and for mtDNA as 10.5%. Y-chromosome data showed larger differentiation between North, Center and South than mtDNA. AIMs detected a minor sub-Saharan component; this is however higher than for other European non-Mediterranean populations. The same signal of sub-Saharan heritage was also evident in uniparental markers.
CONCLUSIONS/SIGNIFICANCE: Italy shows patterns of molecular variation mirroring other European countries, although some heterogeneity exists based on different analysis and molecular markers. From North to South, Italy shows clinal patterns that were most likely modulated during Neolithic times
Genome wide association mapping for arabinoxylan content in a collection of tetraploid wheats
BACKGROUND: Arabinoxylans (AXs) are major components of plant cell walls in bread wheat and are important in bread-making and starch extraction. Furthermore, arabinoxylans are components of soluble dietary fibre that has potential health-promoting effects in human nutrition. Despite their high value for human health, few studies have been carried out on the genetics of AX content in durum wheat. RESULTS: The genetic variability of AX content was investigated in a set of 104 tetraploid wheat genotypes and regions attributable to AX content were identified through a genome wide association study (GWAS). The amount of arabinoxylan, expressed as percentage (w/w) of the dry weight of the kernel, ranged from 1.8% to 5.5% with a mean value of 4.0%. The GWAS revealed a total of 37 significant marker-trait associations (MTA), identifying 19 quantitative trait loci (QTL) associated with AX content. The highest number of MTAs was identified on chromosome 5A (seven), where three QTL regions were associated with AX content, while the lowest number of MTAs was detected on chromosomes 2B and 4B, where only one MTA identified a single locus. Conservation of synteny between SNP marker sequences and the annotated genes and proteins in Brachypodium distachyon, Oryza sativa and Sorghum bicolor allowed the identification of nine QTL coincident with candidate genes. These included a glycosyl hydrolase GH35, which encodes Gal7 and a glucosyltransferase GT31 on chromosome 1A; a cluster of GT1 genes on chromosome 2B that includes TaUGT1 and cisZog1; a glycosyl hydrolase that encodes a CelC gene on chromosome 3A; Ugt12887 and TaUGT1genes on chromosome 5A; a (1,3)-β-D-glucan synthase (Gsl12 gene) and a glucosyl hydrolase (Cel8 gene) on chromosome 7A. CONCLUSIONS: This study identifies significant MTAs for the AX content in the grain of tetraploid wheat genotypes. We propose that these may be used for molecular breeding of durum wheat varieties with higher soluble fibre content.Ilaria Marcotuli, Kelly Houston, Robbie Waugh, Geoffrey B. Fincher, Rachel A. Burton, Antonio Blanco, Agata Gadalet
Approaches in biotechnological applications of natural polymers
Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
Advances in the therapy of Alzheimer's disease: Targeting amyloid beta and tau and perspectives for the future
Worldwide multidisciplinary translational research has led to a growing knowledge of the genetics and molecular pathogenesis of Alzheimer's disease (AD) indicating that pathophysiological brain alterations occur decades before clinical signs and symptoms of cognitive decline can be diagnosed. Consequently, therapeutic concepts and targets have been increasingly focused on early-stage illness before the onset of dementia; and distinct classes of compounds are now being tested in clinical trials. At present, there is a growing consensus that therapeutic progress in AD delaying disease progression would significantly decrease the expanding global burden. The evolving hypothesis- and evidence-based generation of new diagnostic research criteria for early-stage AD has positively impacted the development of clinical trial designs and the characterization of earlier and more specific target populations for trials in prodromal as well as in pre- and asymptomatic at-risk stages of AD
The Relative Contribution of High-Gamma Linguistic Processing Stages of Word Production, and Motor Imagery of Articulation in Class Separability of Covert Speech Tasks in EEG Data
Word production begins with high-Gamma automatic linguistic processing functions followed by speech motor planning and articulation. Phonetic properties are processed in both linguistic and motor stages of word production. Four phonetically dissimilar phonemic structures “BA”, “FO”, “LE”, and “RY” were chosen as covert speech tasks. Ten neurologically healthy volunteers with the age range of 21–33 participated in this experiment. Participants were asked to covertly speak a phonemic structure when they heard an auditory cue. EEG was recorded with 64 electrodes at 2048 samples/s. Initially, one-second trials were used, which contained linguistic and motor imagery activities. The four-class true positive rate was calculated. In the next stage, 312 ms trials were used to exclude covert articulation from analysis. By eliminating the covert articulation stage, the four-class grand average classification accuracy dropped from 96.4% to 94.5%. The most valuable features emerge after Auditory cue recognition (~100 ms post onset), and within the 70–128 Hz frequency range. The most significant identified brain regions were the Prefrontal Cortex (linked to stimulus driven executive control), Wernicke’s area (linked to Phonological code retrieval), the right IFG, and Broca’s area (linked to syllabification). Alpha and Beta band oscillations associated with motor imagery do not contain enough information to fully reflect the complexity of speech movements. Over 90% of the most class-dependent features were in the 30-128 Hz range, even during the covert articulation stage. As a result, compared to linguistic functions, the contribution of motor imagery of articulation in class separability of covert speech tasks from EEG data is negligible
Calf health from birth to weaning. III. housing and management of calf pneumonia
Calfhood diseases have a major impact on the economic viability of cattle operations. A three part review series has been developed focusing on calf health from birth to weaning. In this paper, the last of the three part series, we review disease prevention and management with particular reference to pneumonia, focusing primarily on the pre-weaned calf. Pneumonia in recently weaned suckler calves is also considered, where the key risk factors are related to the time of weaning. Weaning of the suckler calf is often combined with additional stressors including a change in nutrition, environmental change, transport and painful husbandry procedures (castration, dehorning). The reduction of the cumulative effects of these multiple stressors around the time of weaning together with vaccination programmes (preconditioning) can reduce subsequent morbidity and mortality in the feedlot. In most studies, calves housed individually and calves housed outdoors with shelter, are associated with decreased risk of disease. Even though it poses greater management challenges, successful group housing of calves is possible. Special emphasis should be given to equal age groups and to keeping groups stable once they are formed. The management of pneumonia in calves is reliant on a sound understanding of aetiology, relevant risk factors, and of effective approaches to diagnosis and treatment. Early signs of pneumonia include increased respiratory rate and fever, followed by depression. The single most important factor determining the success of therapy in calves with pneumonia is early onset of treatment, and subsequent adequate duration of treatment. The efficacy and economical viability of vaccination against respiratory disease in calves remains unclear
Global response of Plasmodium falciparum to hyperoxia: a combined transcriptomic and proteomic approach
<p>Abstract</p> <p>Background</p> <p>Over its life cycle, the <it>Plasmodium falciparum </it>parasite is exposed to different environmental conditions, particularly to variations in O<sub>2 </sub>pressure. For example, the parasite circulates in human venous blood at 5% O<sub>2 </sub>pressure and in arterial blood, particularly in the lungs, at 13% O<sub>2 </sub>pressure. Moreover, the parasite is exposed to 21% O<sub>2 </sub>levels in the salivary glands of mosquitoes.</p> <p>Methods</p> <p>To study the metabolic adaptation of <it>P. falciparum </it>to different oxygen pressures during the intraerythrocytic cycle, a combined approach using transcriptomic and proteomic techniques was undertaken.</p> <p>Results</p> <p>Even though hyperoxia lengthens the parasitic cycle, significant transcriptional changes were detected in hyperoxic conditions in the late-ring stage. Using PS 6.0™ software (Ariadne Genomics) for microarray analysis, this study demonstrate up-expression of genes involved in antioxidant systems and down-expression of genes involved in the digestive vacuole metabolism and the glycolysis in favour of mitochondrial respiration. Proteomic analysis revealed increased levels of heat shock proteins, and decreased levels of glycolytic enzymes. Some of this regulation reflected post-transcriptional modifications during the hyperoxia response.</p> <p>Conclusions</p> <p>These results seem to indicate that hyperoxia activates antioxidant defence systems in parasites to preserve the integrity of its cellular structures. Moreover, environmental constraints seem to induce an energetic metabolism adaptation of <it>P. falciparum</it>. This study provides a better understanding of the adaptive capabilities of <it>P. falciparum </it>to environmental changes and may lead to the development of novel therapeutic targets.</p
2022 World Hypertension League, Resolve To Save Lives and International Society of Hypertension dietary sodium (salt) global call to action
2022 World Hypertension League, Resolve To Save Lives and International Society of Hypertension dietary sodium (salt) global call to action
This fact sheet and global call to action is aimed at nutrition, hypertension, cardiovascular and other health care clinicians and scientists, and health advocates, as well as the organizations to which they belong. The ‘call’ is to align these audiences with the facts on:
the burden of disease and key evidence supporting reductions in dietary sodium,
the consistent recommendations for reducing dietary sodium from unbiased and comprehensive health and scientific reviews,
the current levels of sodium intake,
the cost savings expected from reducing high dietary sodium,
the sources of controversial opinions,
the current recommended approaches to reduce dietary sodium, and
how to stay up to date with evidence on how to reduce dietary sodium and the evolving research on the adverse health effects of a high sodium intake.
Health, nutrition, hypertension and cardiovascular organizations, and their members, need to become more engaged and advocate for reductions in dietary sodium, and for a greater priority to be given to high quality research on dietary sodium. The World Hypertension League, Resolve to Save Lives and International Society of Hypertension are committed to support reductions in dietary sodium as a high priority
- …
