1,408 research outputs found
Spatial separation in a thermal mixture of ultracold Yb and Rb atoms
We report on the observation of unusually strong interactions in a thermal
mixture of ultracold atoms which cause a significant modification of the
spatial distribution. A mixture of Rb and Yb with a temperature
of a few K is prepared in a hybrid trap consisting of a bichromatic
optical potential superimposed on a magnetic trap. For suitable trap parameters
and temperatures, a spatial separation of the two species is observed. We infer
that the separation is driven by a large interaction strength between
Yb and Rb accompanied by a large three-body recombination rate.
Based on this assumption we have developed a diffusion model which reproduces
our observations
A Q-Ising model application for linear-time image segmentation
A computational method is presented which efficiently segments digital
grayscale images by directly applying the Q-state Ising (or Potts) model. Since
the Potts model was first proposed in 1952, physicists have studied lattice
models to gain deep insights into magnetism and other disordered systems. For
some time, researchers have realized that digital images may be modeled in much
the same way as these physical systems (i.e., as a square lattice of numerical
values). A major drawback in using Potts model methods for image segmentation
is that, with conventional methods, it processes in exponential time. Advances
have been made via certain approximations to reduce the segmentation process to
power-law time. However, in many applications (such as for sonar imagery),
real-time processing requires much greater efficiency. This article contains a
description of an energy minimization technique that applies four Potts
(Q-Ising) models directly to the image and processes in linear time. The result
is analogous to partitioning the system into regions of four classes of
magnetism. This direct Potts segmentation technique is demonstrated on
photographic, medical, and acoustic images.Comment: 7 pages, 8 figures, revtex, uses subfigure.sty. Central European
Journal of Physics, in press (2010
Quantum state engineering on an optical transition and decoherence in a Paul trap
A single Ca+ ion in a Paul trap has been cooled to the ground state of
vibration with up to 99.9% probability. Starting from this Fock state |n=0> we
have demonstrated coherent quantum state manipulation on an optical transition.
Up to 30 Rabi oscillations within 1.4 ms have been observed. We find a similar
number of Rabi oscillations after preparation of the ion in the |n=1> Fock
state. The coherence of optical state manipulation is only limited by laser and
ambient magnetic field fluctuations. Motional heating has been measured to be
as low as one vibrational quantum in 190 ms.Comment: 4 pages, 5 figure
The NN scattering 3S1-3D1 mixing angle at NNLO
The 3S1-3D1 mixing angle for nucleon-nucleon scattering, epsilon_1, is
calculated to next-to-next-to-leading order in an effective field theory with
perturbative pions. Without pions, the low energy theory fits the observed
epsilon_1 well for momenta less than MeV. Including pions
perturbatively significantly improves the agreement with data for momenta up to
MeV with one less parameter. Furthermore, for these momenta the
accuracy of our calculation is similar to an effective field theory calculation
in which the pion is treated non-perturbatively. This gives phenomenological
support for a perturbative treatment of pions in low energy two-nucleon
processes. We explain why it is necessary to perform spin and isospin traces in
d dimensions when regulating divergences with dimensional regularization in
higher partial wave amplitudes.Comment: 17 pages, journal versio
Superfluidity and binary-correlations within clusters of fermions
We propose a method for simulating the behaviour of small clusters of
particles that explicitly accounts for all mean-field and binary-correlation
effects. Our approach leads to a set of variational equations that can be used
to study both the dynamics and thermodynamics of these clusters. As an
illustration of this method, we explore the BCS-BEC crossover in the simple
model of four fermions, interacting with finite-range potentials, in a harmonic
potential. We find, in the crossover regime, that the particles prefer to
occupy two distinct pair states as opposed to the one assumed by BCS theory
Spin-transfer in an open ferromagnetic layer: from negative damping to effective temperature
Spin-transfer is a typical spintronics effect that allows a ferromagnetic
layer to be switched by spin-injection. Most of the experimental results about
spin transfer are described on the basis of the Landau-Lifshitz-Gilbert
equation of the magnetization, in which additional current-dependent damping
factors are added, and can be positive or negative. The origin of the damping
can be investigated further by performing stochastic experiments, like one shot
relaxation experiments under spin-injection in the activation regime of the
magnetization. In this regime, the N\'eel-Brown activation law is observed
which leads to the introduction of a current-dependent effective temperature.
In order to justify the introduction of these counterintuitive parameters
(effective temperature and negative damping), a detailed thermokinetic analysis
of the different sub-systems involved is performed. We propose a thermokinetic
description of the different forms of energy exchanged between the electric and
the ferromagnetic sub-systems at a Normal/Ferromagnetic junction. The
corresponding Fokker Planck equations, including relaxations, are derived. The
damping coefficients are studied in terms of Onsager-Casimir transport
coefficients, with the help of the reciprocity relations. The effective
temperature is deduced in the activation regime.Comment: 65 pages, 10 figure
Relativistic Modification of the Gamow Factor
In processes involving Coulomb-type initial- and final-state interactions,
the Gamow factor has been traditionally used to take into account these
additional interactions. The Gamow factor needs to be modified when the
magnitude of the effective coupling constant increases or when the velocity
increases. For the production of a pair of particles under their mutual
Coulomb-type interaction, we obtain the modification of the Gamow factor in
terms of the overlap of the Feynman amplitude with the relativistic wave
function of the two particles. As a first example, we study the modification of
the Gamow factor for the production of two bosons. The modification is
substantial when the coupling constant is large.Comment: 13 pages, in LaTe
An asymptotic form of the reciprocity theorem with applications in x-ray scattering
The emission of electromagnetic waves from a source within or near a
non-trivial medium (with or without boundaries, crystalline or amorphous, with
inhomogeneities, absorption and so on) is sometimes studied using the
reciprocity principle. This is a variation of the method of Green's functions.
If one is only interested in the asymptotic radiation fields the generality of
these methods may actually be a shortcoming: obtaining expressions valid for
the uninteresting near fields is not just a wasted effort but may be
prohibitively difficult. In this work we obtain a modified form the reciprocity
principle which gives the asymptotic radiation field directly. The method may
be used to obtain the radiation from a prescribed source, and also to study
scattering problems. To illustrate the power of the method we study a few
pedagogical examples and then, as a more challenging application we tackle two
related problems. We calculate the specular reflection of x rays by a rough
surface and by a smoothly graded surface taking polarization effects into
account. In conventional treatments of reflection x rays are treated as scalar
waves, polarization effects are neglected. This is a good approximation at
grazing incidence but becomes increasingly questionable for soft x rays and UV
at higher incidence angles.
PACs: 61.10.Dp, 61.10.Kw, 03.50.DeComment: 19 pages, 4 figure
The variable phase method used to calculate and correct scattering lengths
It is shown that the scattering length can be obtained by solving a Riccati
equation derived from variable phase theory. Two methods of solving it are
presented. The equation is used to predict how long-range interactions
influence the scattering length, and upper and lower bounds on the scattering
length are determined. The predictions are compared with others and it is shown
how they may be obtained from secular perturbation theory.Comment: 7 pages including 3 figure
Manifestation of exciton Bose condensation in induced two-phonon emission and Raman scattering
The unusual two-photon emission by Bose-condensed excitons caused by
simultaneous recombination of two excitons with opposite momenta leaving the
occupation numbers of excitonic states with momenta unchanged
(below coherent two-exciton recombination) is investigated. Raman scattering
accompanied by the analogous two-exciton recombination (or creation) is also
analyzed. The excess momentum equal to the change of the electromagnetic field
momentum in these processes can be transferred to phonons or impurities. The
processes under consideration take place if there is Bose condensation in the
interacting exciton system, and, therefore, can be used as a new method to
reveal exciton Bose condensation. If the frequency of the incident light
( is the frequency corresponding to the recombination
of an exciton with p=0), the coherent two-exciton recombination with the excess
momentum elastically transferred to impurities leads to the appearance of the
spectral line corresponding to the induced two-photon
emission. In this case the anti-Stokes line on frequency also
appears in the Raman spectrum. If , there are both Stokes and
anti-Stokes lines on frequencies in the Raman spectrum. The
induced two-photon emission is impossible in this case. The spectral lines
mentioned above have phonon replicas on frequencies corresponding to the transmission of the excess
momentum (partially or as a whole) to optical phonons of frequency
( is an integer number).Comment: 21 pages, 2 Postscript figures. Submitted to Phys. Rev. B (1998
- …
