880 research outputs found

    Quality of Multicenter Studies Using MRI Radiomics for Diagnosing Clinically Significant Prostate Cancer:A Systematic Review

    Get PDF
    Background: Reproducibility and generalization are major challenges for clinically significant prostate cancer modeling using MRI radiomics. Multicenter data seem indispensable to deal with these challenges, but the quality of such studies is currently unknown. The aim of this study was to systematically review the quality of multicenter studies on MRI radiomics for diagnosing clinically significant PCa. Methods: This systematic review followed the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Multicenter studies investigating the value of MRI radiomics for the diagnosis of clinically significant prostate cancer were included. Quality was assessed using the checklist for artificial intelligence in medical imaging (CLAIM) and the radiomics quality score (RQS). CLAIM consisted of 42 equally important items referencing different elements of good practice AI in medical imaging. RQS consisted of 36 points awarded over 16 items related to good practice radiomics. Final CLAIM and RQS scores were percentage-based, allowing for a total quality score consisting of the average of CLAIM and RQS. Results: Four studies were included. The average total CLAIM score was 74.6% and the average RQS was 52.8%. The corresponding average total quality score (CLAIM + RQS) was 63.7%. Conclusions: A very small number of multicenter radiomics PCa classification studies have been performed with the existing studies being of bad or average quality. Good multicenter studies might increase by encouraging preferably prospective data sharing and paying extra care to documentation in regards to reproducibility and clinical utility

    The Effect of Image Resampling on the Performance of Radiomics-Based Artificial Intelligence in Multicenter Prostate MRI

    Get PDF
    BACKGROUND: Single center MRI radiomics models are sensitive to data heterogeneity, limiting the diagnostic capabilities of current prostate cancer (PCa) radiomics models.PURPOSE: To study the impact of image resampling on the diagnostic performance of radiomics in a multicenter prostate MRI setting.STUDY TYPE: Retrospective.POPULATION: Nine hundred thirty patients (nine centers, two vendors) with 737 eligible PCa lesions, randomly split into training (70%, N = 500), validation (10%, N = 89), and a held-out test set (20%, N = 148).FIELD STRENGTH/SEQUENCE: 1.5T and 3T scanners/T2-weighted imaging (T2W), diffusion-weighted imaging (DWI), and apparent diffusion coefficient maps.ASSESSMENT: A total of 48 normalized radiomics datasets were created using various resampling methods, including different target resolutions (T2W: 0.35, 0.5, and 0.8 mm; DWI: 1.37, 2, and 2.5 mm), dimensionalities (2D/3D) and interpolation techniques (nearest neighbor, linear, Bspline and Blackman windowed-sinc). Each of the datasets was used to train a radiomics model to detect clinically relevant PCa (International Society of Urological Pathology grade ≥ 2). Baseline models were constructed using 2D and 3D datasets without image resampling. The resampling configurations with highest validation performance were evaluated in the test dataset and compared to the baseline models.STATISTICAL TESTS: Area under the curve (AUC), DeLong test. The significance level used was 0.05.RESULTS: The best 2D resampling model (T2W: Bspline and 0.5 mm resolution, DWI: nearest neighbor and 2 mm resolution) significantly outperformed the 2D baseline (AUC: 0.77 vs. 0.64). The best 3D resampling model (T2W: linear and 0.8 mm resolution, DWI: nearest neighbor and 2.5 mm resolution) significantly outperformed the 3D baseline (AUC: 0.79 vs. 0.67).DATA CONCLUSION: Image resampling has a significant effect on the performance of multicenter radiomics artificial intelligence in prostate MRI. The recommended 2D resampling configuration is isotropic resampling with T2W at 0.5 mm (Bspline interpolation) and DWI at 2 mm (nearest neighbor interpolation). For the 3D radiomics, this work recommends isotropic resampling with T2W at 0.8 mm (linear interpolation) and DWI at 2.5 mm (nearest neighbor interpolation).EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.</p

    individual participant data meta-analysis of randomised trials study protocol

    Get PDF
    Introduction Parenteral anticoagulants may improve outcomes in patients with cancer by reducing risk of venous thromboembolic disease and through a direct antitumour effect. Study-level systematic reviews indicate a reduction in venous thromboembolism and provide moderate confidence that a small survival benefit exists. It remains unclear if any patient subgroups experience potential benefits. Methods and analysis First, we will perform a comprehensive systematic search of MEDLINE, EMBASE and The Cochrane Library, hand search scientific conference abstracts and check clinical trials registries for randomised control trials of participants with solid cancers who are administered parenteral anticoagulants. We anticipate identifying at least 15 trials, exceeding 9000 participants. Second, we will perform an individual participant data meta-analysis to explore the magnitude of survival benefit and address whether subgroups of patients are more likely to benefit from parenteral anticoagulants. All analyses will follow the intention-to- treat principle. For our primary outcome, mortality, we will use multivariable hierarchical models with patient-level variables as fixed effects and a categorical trial variable as a random effect. We will adjust analysis for important prognostic characteristics. To investigate whether intervention effects vary by predefined subgroups of patients, we will test interaction terms in the statistical model. Furthermore, we will develop a risk-prediction model for venous thromboembolism, with a focus on control patients of randomised trials. Ethics and dissemination Aside from maintaining participant anonymity, there are no major ethical concerns. This will be the first individual participant data meta-analysis addressing heparin use among patients with cancer and will directly influence recommendations in clinical practice guidelines. Major cancer guideline development organisations will use eventual results to inform their guideline recommendations. Several knowledge users will disseminate results through presentations at clinical rounds as well as national and international conferences. We will prepare an evidence brief and facilitate dialogue to engage policymakers and stakeholders in acting on findings. Trial registration number PROSPERO CRD4201300352
    corecore