216 research outputs found
Regulating Drones Under the First and Fourth Amendments
The FAA Modernization and Reform Act of 2012 requires the Federal Aviation Administration to integrate unmanned aerial vehicles (UAVs), or drones, into the national airspace system by September 2015. Yet perhaps because of their chilling accuracy in targeted killings abroad, perhaps because of an increasing consciousness of diminishing privacy more generally, and perhaps simply because of a fear of the unknown, divergent UAV-restrictive legislation has been proposed in Congress and enacted in a number of states. Given UAV utility and cost-effectiveness over a vast range of tasks, however, widespread commercial use ultimately seems certain. Consequently, it is imperative to understand the constitutional restraints on public flight and constitutional protections afforded to private flight. Unfortunately, although there are a few Fourth Amendment precedents in manned aviation, they are mired not only in 1980s technology but also in the 1980s third party doctrine, and therefore do not reflect more recent Fourth Amendment developments and doctrinal fissures. There is also considerable uncertainty over First Amendment protection of information-gathering—for example, is there a right to record? Further, there is no judicial or scholarly analysis of how UAV flight fits within contemporary First Amendment forum doctrine, a framework that provides a useful starting point for analyzing speech restrictions in government-controlled airspace, but that comes with some uncertainties of its own. It is into this thicket that we dive, and fortunately some clarity emerges. Although the Fourth Amendment third party doctrine hopelessly misunderstands privacy and therefore under-protects our security and liberty interests, the Supreme Court’s manned flyover cases can be mined for a sensible public disclosure doctrine that seems agnostic as to the various Fourth Amendment conceptions: we do not typically require only law enforcement to shield its eyes. Of course, both constitutions and legislation can place special restrictions upon law enforcement, and sometimes doing so makes good sense. But as a general Fourth Amendment matter, the officer may do and see as the citizen would. Hence to understand Fourth Amendment regulation, we must understand how the First Amendment limits government restraint on speech-relevant private UAV flight. Here we analyze the developing right to record and apply contemporary forum doctrine to this novel means of speech and information-gathering. If navigable airspace is treated as a limited public forum, as we propose with some qualification, then the Federal Aviation Administration will have significant—though not unlimited—regulatory leeway to evenhandedly burden speech-related UAV activities where doing so would reasonably promote safe unmanned and manned flight operations. The Agency, however, would likely need further congressional action before it can restrict UAV flight based on privacy rather than safety concerns. As the legality and norms of private flight correspondingly take shape, they will inform Fourth Amendment restrictions on government use
Hyperstrong Radio-Wave Scattering in the Galactic Center. II. A Likelihood Analysis of Free Electrons in the Galactic Center
The scattering diameters of Sgr A* and several nearby OH masers (~ 1" at 1
GHz) indicate that a region of enhanced scattering is along the line of sight
to the Galactic center. We combine radio-wave scattering data and free-free
emission and absorption measurements in a likelihood analysis that constrains
the following parameters of the GC scattering region: The GC-scattering region
separation, d; the angular extent of the region, \psi_l; the outer scale on
which density fluctuations occur, l_0; and the gas temperature, T. The maximum
likelihood estimates of these parameters are d = 133_{-80}^{+200} pc, 0.5
degrees <= \psi_l <~ 1 degrees, and (l_0/1 pc)^{2/3}T^{-1/2} = 10^{-7 +/- 0.8}.
As host media for the scattering, we consider the photoionized surface layers
of molecular clouds and the interfaces between molecular clouds and the 10^7 K
ambient gas. We are unable to make an unambiguous determination, but we favor
an interface model in which the scattering medium is hot (T ~ 10^6 K) and dense
(n_e ~ 10 cm^{-3}). The GC scattering region produces a 1 GHz scattering
diameter for an extragalactic source of 90", if the region is a single screen,
or 180", if the region wraps around the GC, as appears probable. We modify the
Taylor-Cordes model for the Galactic distribution of free electrons in order to
include an explicit GC component. Pulsars seen through this region will have a
dispersion measure of approximately 2000 pc cm^{-3}, of which 75% arises from
the GC component. We stress the uniqueness of the GC scattering region,
probably resulting from the high-pressure environment in the GC.Comment: 39 pages with 9 PostScript figures; LaTeX2e with AASTeX macro aaspp4,
to be published in Ap
On the morphologies, gas fractions, and star formation rates of small galaxies
We use a series of N-body/smoothed particle hydrodynamics simulations and
analytic arguments to show that the presence of an effective temperature floor
in the interstellar medium at T_F ~ 10^4 K naturally explains the tendency for
low-mass galaxies to be more spheroidal, more gas rich, and less efficient in
converting baryons into stars than larger galaxies. The trend arises because
gas pressure support becomes important compared to angular momentum support in
small dark matter haloes. We suggest that dwarf galaxies with rotational
velocities ~ 40 km/s do not originate as thin discs, but rather are born as
thick, puffy systems. If accreted on to larger haloes, tenuous dwarfs of this
kind will be more susceptible to gas loss or tidal transformation than
scaled-down versions of larger spirals. For a constant temperature floor,
pressure support becomes less important in large haloes, and this produces a
tendency for massive isolated galaxies to have thinner discs and more efficient
star formation than their less massive counterparts, as observed.Comment: 10 pages, 8 figures, MNRAS in press. Minor changes in response to
referee comment
Kinematic Distances to Molecular Clouds identified in the Galactic Ring Survey
Kinematic distances to 750 molecular clouds identified in the 13CO J=1-0
Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey
(BU-FCRAO GRS) are derived assuming the Clemens rotation curve of the Galaxy.
The kinematic distance ambiguity is resolved by examining the presence of HI
self-absorption toward the 13CO emission peak of each cloud using the Very
Large Array Galactic Plane Survey (VGPS). We also identify 21 cm continuum
sources embedded in the GRS clouds in order to use absorption features in the
HI 21 cm continuum to distinguish between near and far kinematic distances. The
Galactic distribution of GRS clouds is consistent with a four-arm model of the
Milky Way. The locations of the Scutum-Crux and Perseus arms traced by GRS
clouds match star count data from the Galactic Legacy Infrared Mid-Plane Survey
Extraordinaire (GLIMPSE) star-count data. We conclude that molecular clouds
must form in spiral arms and be short-lived (lifetimes < 10 Myr) in order to
explain the absence of massive, 13CO bright molecular clouds in the inter-arm
space
The Dark Matter Distributions in Low-mass Disk Galaxies. II. The Inner Density Profiles
Dark-matter-only simulations predict that dark matter halos have steep, cuspy inner density profiles, while observations of dwarf galaxies find a range of inner slopes that are often much shallower. There is debate whether this discrepancy can be explained by baryonic feedback or if it may require modified dark matter models. In Paper I of this series, we obtained high-resolution integral field Hα observations for 26 dwarf galaxies with M* = 10^(8.1)−10^(9.7) M_⊙. We derived rotation curves from our observations, which we use here to construct mass models. We model the total mass distribution as the sum of a generalized Navarro–Frenk–White (NFW) dark matter halo and the stellar and gaseous components. Our analysis of the slope of the dark matter density profile focuses on the inner 300–800 pc, chosen based on the resolution of our data and the region resolved by modern hydrodynamical simulations. The inner slope measured using ionized and molecular gas tracers is consistent, and it is additionally robust to the choice of stellar mass-to-light ratio. We find a range of dark matter profiles, including both cored and cuspy slopes, with an average of ρ}_(DM ~ r^(-0.74 ± 0.07), shallower than the NFW profile, but steeper than those typically observed for lower-mass galaxies with M* ~ 10^(7.5) M_⊙. Simulations that reproduce the observed slopes in those lower-mass galaxies also produce slopes that are too shallow for galaxies in our mass range. We therefore conclude that supernova feedback models do not yet provide a fully satisfactory explanation for the observed trend in dark matter slopes
Dynamically Driven Evolution of the Interstellar Medium in M51
We report the highest-fidelity observations of the spiral galaxy M51 in CO
emission, revealing the evolution of giant molecular clouds (GMCs) vis-a-vis
the large-scale galactic structure and dynamics. The most massive GMCs
(so-called GMAs) are first assembled and then broken up as the gas flow through
the spiral arms. The GMAs and their H2 molecules are not fully dissociated into
atomic gas as predicted in stellar feedback scenarios, but are fragmented into
smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as
the chains of GMCs that emerge from the spiral arms into interarm regions. The
kinematic shear within the spiral arms is sufficient to unbind the GMAs against
self-gravity. We conclude that the evolution of GMCs is driven by large-scale
galactic dynamics --their coagulation into GMAs is due to spiral arm streaming
motions upon entering the arms, followed by fragmentation due to shear as they
leave the arms on the downstream side. In M51, the majority of the gas remains
molecular from arm entry through the inter-arm region and into the next spiral
arm passage.Comment: 6 pages, including 3 figures. Accepted, ApJ
The Allen Telescope Array: The First Widefield, Panchromatic, Snapshot Radio Camera for Radio Astronomy and SETI
The first 42 elements of the Allen Telescope Array (ATA-42) are beginning to
deliver data at the Hat Creek Radio Observatory in Northern California.
Scientists and engineers are actively exploiting all of the flexibility
designed into this innovative instrument for simultaneously conducting surveys
of the astrophysical sky and conducting searches for distant technological
civilizations. This paper summarizes the design elements of the ATA, the cost
savings made possible by the use of COTS components, and the cost/performance
trades that eventually enabled this first snapshot radio camera. The
fundamental scientific program of this new telescope is varied and exciting;
some of the first astronomical results will be discussed.Comment: Special Issue of Proceedings of the IEEE: "Advances in Radio
Telescopes", Baars,J. Thompson,R., D'Addario, L., eds, 2009, in pres
Cloud angular momentum and effective viscosity in global SPH simulations with feedback
We examine simulations of isolated galaxies to analyse the effects of localized feedback on the formation and evolution of molecular clouds. Feedback contributes to turbulence and the destruction of clouds, leading to a population of clouds that is younger, less massive, and with more retrograde rotation. We investigate the evolution of clouds as they interact with each other and the diffuse interstellar medium, and determine that the role of cloud interactions differs strongly with the presence of feedback: in models without feedback, scattering events dramatically increase the retrograde fraction, but in models with feedback, mergers between clouds may slightly increase the prograde fraction. We also produce an estimate of the viscous time-scale due to cloud–cloud collisions, which increases with increasing strength of feedback (tν ∼ 20 Gyr versus tν ∼ 10 Gyr), but is still much smaller than previous estimates (tν ∼ 1000 Gyr); although collisions become more frequent with feedback, less energy is lost in each collision than in the models without feedback
The Allen Telescope Array Pi GHz Sky Survey I. Survey Description and Static Catalog Results for the Bootes Field
The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array.
PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky
with an emphasis on synoptic observations that measure the static and
time-variable properties of the sky. During the 2.5-year campaign, PiGSS will
twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with
b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the
sky will be observed multiple times to characterize variability on time scales
of days to years. We present here observations of a 10 deg^2 region in the
Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The
PiGSS image was constructed from 75 daily observations distributed over a
4-month period and has an rms flux density between 200 and 250 microJy. This
represents a deeper image by a factor of 4 to 8 than we will achieve over the
entire 10,000 deg^2. We provide flux densities, source sizes, and spectral
indices for the 425 sources detected in the image. We identify ~100$ new flat
spectrum radio sources; we project that when completed PiGSS will identify 10^4
flat spectrum sources. We identify one source that is a possible transient
radio source. This survey provides new limits on faint radio transients and
variables with characteristic durations of months.Comment: Accepted for publication in ApJ; revision submitted with extraneous
figure remove
The Allen Telescope Array Twenty-centimeter Survey - A 690-Square-Degree, 12-Epoch Radio Dataset - I: Catalog and Long-Duration Transient Statistics
We present the Allen Telescope Array Twenty-centimeter Survey (ATATS), a
multi-epoch (12 visits), 690 square degree radio image and catalog at 1.4GHz.
The survey is designed to detect rare, very bright transients as well as to
verify the capabilities of the ATA to form large mosaics. The combined image
using data from all 12 ATATS epochs has RMS noise sigma = 3.94mJy / beam and
dynamic range 180, with a circular beam of 150 arcsec FWHM. It contains 4408
sources to a limiting sensitivity of S = 20 mJy / beam. We compare the catalog
generated from this 12-epoch combined image to the NRAO VLA Sky Survey (NVSS),
a legacy survey at the same frequency, and find that we can measure source
positions to better than ~20 arcsec. For sources above the ATATS completeness
limit, the median flux density is 97% of the median value for matched NVSS
sources, indicative of an accurate overall flux calibration. We examine the
effects of source confusion due to the effects of differing resolution between
ATATS and NVSS on our ability to compare flux densities. We detect no
transients at flux densities greater than 40 mJy in comparison with NVSS, and
place a 2-sigma upper limit on the transient rate for such sources of 0.004 per
square degree. These results suggest that the > 1 Jy transients reported by
Matsumura et al. (2009) may not be true transients, but rather variable sources
at their flux density threshold.Comment: 41 pages, 19 figures, ApJ accepted; corrected minor typo in Table
- …
