4,026 research outputs found
Uniaxial strain detwinning of CaFe2As2 and BaFe2As2: optical and transport study
TThe parent compounds of iron-arsenide superconductors, FeAs
(=Ca, Sr, Ba), undergo a tetragonal to orthorhombic structural transition at
a temperature in the range 135 to 205K depending on the
alkaline earth element. Below the free standing crystals
split into equally populated structural domains, which mask intrinsic,
in-plane, anisotropic properties of the materials. Here we demonstrate a way of
mechanically detwinning CaFeAs and BaFeAs. The
detwinning is nearly complete, as demonstrated by polarized light imaging and
synchrotron -ray measurements, and reversible, with twin pattern restored
after strain release. Electrical resistivity measurements in the twinned and
detwinned states show that resistivity, , decreases along the
orthorhombic -axis but increases along the orthorhombic -axis in
both compounds. Immediately below the ratio = 1.2 and 1.5 for Ca and Ba compounds, respectively. Contrary to
CaFeAs, BaFeAs reveals an anisotropy in the nominally
tetragonal phase, suggesting that either fluctuations play a larger role above
in BaFeAs than in CaFeAs, or that
there is a higher temperature crossover or phase transition.Comment: extended versio
Transpolar arc evolution and associated potential patterns
International audienceWe present two event studies encompassing detailed relationships between plasma convection, field-aligned current, auroral emission, and particle precipitation boundaries. We illustrate the influence of the Interplanetary Magnetic Field By component on theta aurora development by showing two events during which the theta originates on both the dawn and dusk sides of the auroral oval. Both theta then move across the entire polar region and become part of the opposite side of the auroral oval. Electric and magnetic field and precipitating particle data are provided by DMSP, while the Polar UVI instrument provides measurements of auroral emissions. Utilizing satellite data as inputs, the Royal Institute of Technology model provides the high-latitude ionospheric electrostatic potential pattern calculated at different times during the evolution of the theta aurora, resulting from a variety of field-aligned current configurations associated with the changing global aurora. Key words. Ionosphere (auroral ionosphere; electric fields and currents). Magnetospheric physics (magnetosphereionosphere interactions
Effect of tensile stress on the in-plane resistivity anisotropy in BaFe2As2
The effect of uniaxial tensile stress and the resultant strain on the
structural/magnetic transition in the parent compound of the iron arsenide
superconductor, BaFeAs, is characterized by temperature-dependent
electrical resistivity, x-ray diffraction and quantitative polarized light
imaging. We show that strain induces a measurable uniaxial structural
distortion above the first-order magnetic transition and significantly smears
the structural transition. This response is different from that found in
another parent compound, SrFeAs, where the coupled structural and
magnetic transitions are strongly first order. This difference in the
structural responses explains the in-plain resistivity anisotropy above the
transition in BaFeAs. This conclusion is supported by the
Ginzburg-Landau - type phenomenological model for the effect of the uniaxial
strain on the resistivity anisotropy
Tekuk Torsi Lateral Balok I Kantilever Non Prismatis
. This paper presents the results of a study about elastic lateral torsional buckling of web tapered cantilever I beams. Elastic buckling analysis was carried out on a number of web tapered cantilever I beam. Beam parameters are expressed in term of dimensionless parameter for lateral torsional buckling and the slope of the side of the tapered web. The analysis is performed using finite element method and the SAP 2000 v 14 program is used to do the analysis. The finite element formulation is based on bifurcation theory. This theory leads to Eigen Value Problem. Critical moment is the lowest Eigen value. The load to be considered is point load at the free end of the beam and uniformly distributed load. Three location of load are considered. The first is at shear center, the second is at top flange and the third is at the bottom flange.From this study, it can be concluded that the slope of the side of tapered web has little influence on the critical moment. But the influence of load height on critical moment is strongly influenced by the slope of the side of the tapered web. Equations for estimating the critical moment has been obtained by regression of the data results of the finite element method
Antipyretic, parasitologic, and immunologic effects of combining sulfadoxine/pyrimethamine with chloroquine or paracetamol for treating uncomplicated Plasmodium falciparum malaria
Sulfadoxine/pyrimethamine (SP) is increasingly used against malaria in sub-Saharan Africa because of chloroquine resistance. However, chloroquine may have a beneficial antipyretic effect. We therefore compared the combination of SP plus chloroquine, chloroquine alone, SP alone, and SP plus paracetamol in the treatment of uncomplicated Plasmodium falciparum malaria in 175 Tanzanian children (1-4 years old) in a randomized trial. Outcome variables were axillary temperatures every six hours, daily parasitemias, and serum levels of IgG antibodies to P. falciparum. Lower mean temperatures (6-48 hours) were achieved with SP plus chloroquine or paracetamol than with SP alone (P \u3c 0.001) or chloroquine alone (P \u3c 0.05). All three SP-treated groups showed high and similar parasite reduction (0-48 hours), whereas treatment with chloroquine alone was much less effective. Levels of IgG antibodies to P. falciparum increased significantly (P \u3c 0.001) and similarly in the four treatment groups between days 0, 2. and 3. Thus, the addition of chloroquine or paracetamol to SP improved the clinical outcome, but did not affect the parasitologic response or antibody production
Iterative approach to computational enzyme design
A general approach for the computational design of enzymes to catalyze arbitrary reactions is a goal at the forefront of the field of protein design. Recently, computationally designed enzymes have been produced for three chemical reactions through the synthesis and screening of a large number of variants. Here, we present an iterative approach that has led to the development of the most catalytically efficient computationally designed enzyme for the Kemp elimination to date. Previously established computational techniques were used to generate an initial design, HG-1, which was catalytically inactive. Analysis of HG-1 with molecular dynamics simulations (MD) and X-ray crystallography indicated that the inactivity might be due to bound waters and high flexibility of residues within the active site. This analysis guided changes to our design procedure, moved the design deeper into the interior of the protein, and resulted in an active Kemp eliminase, HG-2. The cocrystal structure of this enzyme with a transition state analog (TSA) revealed that the TSA was bound in the active site, interacted with the intended catalytic base in a catalytically relevant manner, but was flipped relative to the design model. MD analysis of HG-2 led to an additional point mutation, HG-3, that produced a further threefold improvement in activity. This iterative approach to computational enzyme design, including detailed MD and structural analysis of both active and inactive designs, promises a more complete understanding of the underlying principles of enzymatic catalysis and furthers progress toward reliably producing active enzymes
- …
