143 research outputs found
An automatic correction tool for relational database schemas
A Web-based tool developed to automatically correct relational database schemas is presented. This tool has been integrated into a more general e-learning platform and is used to reinforce teaching and learning on database courses. This platform assigns to each student a set of database problems selected from a common repository. The student has to design a relational database schema and enter it into the system through a user friendly interface specifically designed for it. The correction tool corrects the design and shows detected errors. The student has the chance to correct them and send a new solution. These steps can be repeated as many times as required until a correct solution is obtained. Currently, this system is being used in different introductory database courses at the University of Girona with very promising result
Medical image registration based on random line sampling
One of the key aspects in 3D-image registration is the computation of the joint intensity histogram. We propose a new approach to compute this histogram using uniformly distributed random lines to sample stochastically the overlapping volume between two 3D-images. The intensity values are captured from the lines at evenly spaced positions, taking an initial random offset different for each line. This method provides us with an accurate, robust and fast mutual information-based registration. The interpolation effects are drastically reduced, due to the stochastic nature of the line generation, and the alignment process is also accelerated. The results obtained show a better performance of the introduced method than the classic computation of the joint histogra
Similarity-based Exploded Views
Exploded views are often used in illustration to overcome the problem of occlusion when depicting complex structures. In this paper, we propose a volume visualization technique inspired by exploded views that partitions the volume into a number of parallel slabs and shows them apart from each other. The thickness of slabs is driven by the similarity between partitions. We use an information-theoretic technique for the generation of exploded views. First, the algorithm identifies the viewpoint from which the structure is the highest. Then, the partition of the volume into the most informative slabs for exploding is obtained using two complementary similarity-based strategies. The number of slabs and the similarity parameter are freely adjustable by the user
A Monte Carlo-Based Fiber Tracking Algorithm using Diffusion Tensor MRI
Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approac
The Hybrid Octree: towards the definition of a multiresolution hybrid framework
The Hybrid Octree (HO) is an octree-based representation scheme for coding in a single model an exact representation of a surface
and volume data. The HO is able to efficiently manipulate surface and volume data independently. Moreover, it facilitates the visualization and composition of surface and volume data using graphic hardware. The HO definition and its construction algorithm are provided. Some examples are presented and the goodness of the model is discussed.Postprint (published version
Multiresolution volume visualitzacion with a texture-based octree
Although 3D texture-based volume rendering guarantees image quality almost interactively, it is difficult to maintain an interactive rate when the technique has to be exploited on large datasets. In this paper, we propose a new texture memory representation and a management policy that substitute the classical one-texel per voxel approach for a hierarchical approach. The hierarchical approach benefits nearly homogeneous regions and regions of lower interest. The proposed algorithm is based on a simple traversal of the octree representation of the volume data. Driven by a user-defined image quality, defined as a combination of data homogeneity and importance, a set of octree nodes (the cut) is selected to be rendered. The degree of accuracy applied for the representation of each one of the nodes of the cut in the texture memory is set independently according to the user-defined parameters. The variable resolution texture model obtained reduces the texture memory size and thus texture swapping, improving rendering speed.Postprint (published version
Obscurance-based Volume Rendering Framework
IEEE/ EG Symposium on Volume and Point-Based Graphics (2008) H.- C. Hege, D. Laidlaw, R. Pajarola, O. Staadt (Editors)lighting effects in a faster way than global illumination. Its application in volume visualization is of special interest since it permits us to generate a high quality rendering at a low cost. In this paper, we propose an obscurancebased framework that allows us to obtain realistic and illustrative volume visualizations in an interactive manner. Obscurances can include color bleeding effects without additional cost. Moreover, we obtain a saliency map from the gradient of obscurances and we show its application to enhance volume visualization and to select the most salient views.publishedVersio
- …
