774 research outputs found
Orthogonal nets and Clifford algebras
A Clifford algebra model for M"obius geometry is presented. The notion of
Ribaucour pairs of orthogonal systems in arbitrary dimensions is introduced,
and the structure equations for adapted frames are derived. These equations are
discretized and the geometry of the occuring discrete nets and sphere
congruences is discussed in a conformal setting. This way, the notions of
``discrete Ribaucour congruences'' and ``discrete Ribaucour pairs of orthogonal
systems'' are obtained --- the latter as a generalization of discrete
orthogonal systems in Euclidean space. The relation of a Cauchy problem for
discrete orthogonal nets and a permutability theorem for the Ribaucour
transformation of smooth orthogonal systems is discussed.Comment: Plain TeX, 16 pages, 4 picture
Incircular nets and confocal conics
We consider congruences of straight lines in a plane with the combinatorics
of the square grid, with all elementary quadrilaterals possessing an incircle.
It is shown that all the vertices of such nets (we call them incircular or
IC-nets) lie on confocal conics.
Our main new results are on checkerboard IC-nets in the plane. These are
congruences of straight lines in the plane with the combinatorics of the square
grid, combinatorially colored as a checkerboard, such that all black coordinate
quadrilaterals possess inscribed circles. We show how this larger class of
IC-nets appears quite naturally in Laguerre geometry of oriented planes and
spheres, and leads to new remarkable incidence theorems. Most of our results
are valid in hyperbolic and spherical geometries as well. We present also
generalizations in spaces of higher dimension, called checkerboard IS-nets. The
construction of these nets is based on a new 9 inspheres incidence theorem.Comment: 33 pages, 24 Figure
On the Birkhoff factorization problem for the Heisenberg magnet and nonlinear Schroedinger equations
A geometrical description of the Heisenberg magnet (HM) equation with
classical spins is given in terms of flows on the quotient space where
is an infinite dimensional Lie group and is a subgroup of . It is
shown that the HM flows are induced by an action of on ,
and that the HM equation can be integrated by solving a Birkhoff factorization
problem for . For the HM flows which are Laurent polynomials in the spectral
variable we derive an algebraic transformation between solutions of the
nonlinear Schroedinger (NLS) and Heisenberg magnet equations. The Birkhoff
factorization for is treated in terms of the geometry of the Segal-Wilson
Grassmannian . The solution of the problem is given in terms of a pair
of Baker functions for special subspaces of . The Baker functions are
constructed explicitly for subspaces which yield multisoliton solutions of NLS
and HM equations.Comment: To appear in Journal of Mathematical Physic
Integrable discrete nets in Grassmannians
We consider discrete nets in Grassmannians which generalize
Q-nets (maps with planar elementary
quadrilaterals) and Darboux nets (-valued maps defined on the
edges of such that quadruples of points corresponding to
elementary squares are all collinear). We give a geometric proof of
integrability (multidimensional consistency) of these novel nets, and show that
they are analytically described by the noncommutative discrete Darboux system.Comment: 10 p
- …
