408 research outputs found

    Scalar leptoquarks and the rare B meson decays

    Full text link
    We study some rare decays of BB meson involving the quark level transition bql+l(q=d,s)b \to q l^+l^- (q=d,s) in the scalar leptoquark model. We constrain the leptoquark parameter space using the recently measured branching ratios of Bs,dμ+μB_{s,d} \to \mu^+ \mu^- processes. Using such parameters, we obtain the branching ratios, direct CP violation parameters and isospin asymmetries in BKμ+μB \to K \mu^+ \mu^- and Bπμ+μB \to \pi \mu^+ \mu^- processes. We also obtain the branching ratios for some lepton flavour violating decays Bli+ljB \to l_i^+ l_j^-. We find that the various anomalies associated with the isospin asymmetries of BKμ+μB \to K \mu^+ \mu^- process can be explained in the scalar leptoquark model.Comment: 28 pages, 7 figures. typos corrected, to appear in Phys. Rev.

    Exclusive rare B -> K*e+e- decays at low recoil: controlling the long-distance effects

    Full text link
    We present a model-independent description of the exclusive rare decays B-> K* e+e- in the low recoil region (large lepton invariant mass q^2 ~ m_b^2). In this region the long-distance effects from quark loops can be computed with the help of an operator product expansion in 1/Q, with Q={m_b, \sqrt{q^2}}. Nonperturbative effects up to and including terms suppressed by Lambda/Q and mc^2/mb^2 relative to the short-distance amplitude can be included in a model-independent way. Based on these results, we propose an improved method for determining the CKM matrix element |V{ub}| from a combination of rare and semileptonic B and D decays near the zero recoil point. The residual theoretical uncertainty from long distance effects in this |V{ub}| determination comes from terms in the OPE of order alpha_s(Q)\Lambda/mb, alpha_s^2(Q), mc^4/mb^4$ and duality violations and is estimated to be below 10%.Comment: 21 pages RevTex, 2 figures; v3: extensive numerical changes in the NLL analysis, with improved stability under scale dependence. Typos fixed, version to appear in Phys.Rev.

    Recent developments in radiative B decays

    Full text link
    We report on recent theoretical progress in radiative B decays. We focus on a calculation of logarithmically enhanced QED corrections to the branching ratio and forward-backward asymmetry in the inclusive rare decay anti-B --> X(s) l+ l-, and present the results of a detailed phenomenological analysis. We also report on the calculation of NNLO QCD corrections to the inclusive decay anti-B --> X(s) gamma. As far as exclusive modes are concerned we consider transversity amplitudes and the impact of right-handed currents in the exclusive anti-B --> K^* l+ l- decay. Finally, we state results for exclusive B --> V gamma decays, notably the time-dependent CP-asymmetry in the exclusive B --> K^* gamma decay and its potential to serve as a so-called ``null test'' of the Standard Model, and the extraction of CKM and unitarity triangle parameters from B --> (rho,omega) gamma and B --> K^* gamma decays.Comment: 5 pages, 2 figures. Accepted for publication in the proceedings of International Europhysics Conference on High Energy Physics (EPS-HEP2007), Manchester, England, 19-25 Jul 200

    Supersymmetric constraints from Bs -> mu+mu- and B -> K* mu+mu- observables

    Get PDF
    We study the implications of the recent LHCb limit and results on Bs -> mu+mu- and B -> K* mu+mu- observables in the constrained SUSY scenarios. After discussing the Standard Model predictions and carefully estimating the theoretical errors, we show the constraining power of these observables in CMSSM and NUHM. The latest limit on BR(Bs -> mu+mu-), being very close to the SM prediction, constrains strongly the large tan(beta) regime and we show that the various angular observables from B -> K* mu+mu- decay can provide complementary information in particular for moderate tan(beta) values.Comment: 30 pages, 14 figure

    Complementarity of Semileptonic BB to K2(1430)K_2^*(1430) and K(892)K^*(892) Decays in the Standard Model with Fourth Generation

    Full text link
    The BK2(1430)l+lB\rightarrow K_{2}^{\ast}(1430)l^{+}l^{-} (l=μ,τ)(l=\mu,\tau) decays are analyzed in the Standard Model extended to fourth generation of quarks (SM4). The decay rate, forward-backward asymmetry, lepton polarization asymmetries and the helicity fractions of the final state K2(1430)K^{*}_{2}(1430) meson are obtained using the form factors calculated in the light cone sum rules (LCSR) approach. We have utilized the constraints on different fourth generation parameters obtained from the experimental information on KK, BB and DD decays and from the electroweak precision data to explore their impact on the BK2(1430)l+lB\rightarrow K_{2}^{\ast}(1430)l^{+}l^{-} decay. We find that the values of above mentioned physical observables deviate deviate significantly from their minimal SM predications. We also identify a number of correlations between various observables in BK2(1430)l+lB\rightarrow K_{2}^{\ast}(1430)l^{+}l^{-} and BK(892)l+lB\rightarrow K^{\ast}(892)l^{+}l^{-} decays. Therefore a combined analysis of these two decays will compliment each other in the searches of SM4 effects in flavor physics.Comment: 28 pages, 12 figure

    The Benefits of B ---> K* l+ l- Decays at Low Recoil

    Get PDF
    Using the heavy quark effective theory framework put forward by Grinstein and Pirjol we work out predictions for B -> K* l+ l-, l = (e, mu), decays for a softly recoiling K*, i.e., for large dilepton masses sqrt{q^2} of the order of the b-quark mass m_b. We work to lowest order in Lambda/Q, where Q = (m_b, sqrt{q^2}) and include the next-to-leading order corrections from the charm quark mass m_c and the strong coupling at O(m_c^2/Q^2, alpha_s). The leading Lambda/m_b corrections are parametrically suppressed. The improved Isgur-Wise form factor relations correlate the B -> K* l+ l- transversity amplitudes, which simplifies the description of the various decay observables and provides opportunities for the extraction of the electroweak short distance couplings. We propose new angular observables which have very small hadronic uncertainties. We exploit existing data on B -> K* l+ l- distributions and show that the low recoil region provides powerful additional information to the large recoil one. We find disjoint best-fit solutions, which include the Standard Model, but also beyond-the-Standard Model ones. This ambiguity can be accessed with future precision measurements.Comment: 31 pages, 8 figures; Instability near minimal recoil from numerics removed, Fig. 1 replaced and minor shifts in short distance uncertainties in SM predictions; typos corrected and references added; main results and conclusions unchange

    Model-independent constraints on new physics in b --> s transitions

    Get PDF
    We provide a comprehensive model-independent analysis of rare decays involving the b --> s transition to put constraints on dimension-six Delta(F)=1 effective operators. The constraints are derived from all the available up-to-date experimental data from the B-factories, CDF and LHCb. The implications and future prospects for observables in b --> s l+l- and b --> s nu nu transitions in view of improved measurements are also investigated. The present work updates and generalises previous studies providing, at the same time, a useful tool to test the flavour structure of any theory beyond the SM.Comment: 1+39 pages, 12 figures, 3 tables. v2: minor modifications, typos corrected, references added, version to be published in JHE

    Implications from clean observables for the binned analysis of B -> K*ll at large recoil

    Get PDF
    We perform a frequentist analysis of q^2-dependent B-> K*(->Kpi)ll angular observables at large recoil, aiming at bridging the gap between current theoretical analyses and the actual experimental measurements. We focus on the most appropriate set of observables to measure and on the role of the q^2-binning. We highlight the importance of the observables P_i exhibiting a limited sensitivity to soft form factors for the search for New Physics contributions. We compute predictions for these binned observables in the Standard Model, and we compare them with their experimental determination extracted from recent LHCb data. Analyzing b->s and b->sll transitions within four different New Physics scenarios, we identify several New Physics benchmark points which can be discriminated through the measurement of P_i observables with a fine q^2-binning. We emphasise the importance (and risks) of using observables with (un)suppressed dependence on soft form factors for the search of New Physics, which we illustrate by the different size of hadronic uncertainties attached to two related observables (P_1 and S_3). We illustrate how the q^2-dependent angular observables measured in several bins can help to unravel New Physics contributions to B-> K*(->Kpi)ll, and show the extraordinary constraining power that the clean observables will have in the near future. We provide semi-numerical expressions for these observables as functions of the relevant Wilson coefficients at the low scale.Comment: 50 pages, 21 figures. Improved form factor analysis, conclusions unchanged. Plots with full resolution. Version published in JHE

    More Benefits of Semileptonic Rare B Decays at Low Recoil: CP Violation

    Full text link
    We present a systematic analysis of the angular distribution of Bbar -> Kbar^\ast (-> Kbar pi) l^+ l^- decays with l = e, mu in the low recoil region (i.e. at high dilepton invariant masses of the order of the mass of the b-quark) to account model-independently for CP violation beyond the Standard Model, working to next-to-leading order QCD. From the employed heavy quark effective theory framework we identify the key CP observables with reduced hadronic uncertainties. Since some of the CP asymmetries are CP-odd they can be measured without B-flavour tagging. This is particularly beneficial for Bbar_s,B_s -> phi(-> K^+ K^-) l^+ l^- decays, which are not self-tagging, and we work out the corresponding time-integrated CP asymmetries. Presently available experimental constraints allow the proposed CP asymmetries to be sizeable, up to values of the order ~ 0.2, while the corresponding Standard Model values receive a strong parametric suppression at the level of O(10^-4). Furthermore, we work out the allowed ranges of the short-distance (Wilson) coefficients C_9,C_10 in the presence of CP violation beyond the Standard Model but no further Dirac structures. We find the Bbar_s -> mu^+ mu^- branching ratio to be below 9*10^-9 (at 95% CL). Possibilities to check the performance of the theoretical low recoil framework are pointed out.Comment: 18 pages, 3 fig.; 1 reference and comment on higher order effects added; EOS link fixed. Minor adjustments to Eqs 4.1-4.3 to match the (lower) q^2-cut as given in paper. Main results and conclusions unchanged; v3+v4: treatment of exp. uncert. in likelihood-function in EOS fixed and constraints from scan on C9,C10 updated (Fig 2,3 and Eqs 3.2,3.3). Main results and conclusions absolutely unchange

    Bayesian Fit of Exclusive bsˉb \to s \bar\ell\ell Decays: The Standard Model Operator Basis

    Full text link
    We perform a model-independent fit of the short-distance couplings C7,9,10C_{7,9,10} within the Standard Model set of bsγb\to s\gamma and bsˉb\to s\bar\ell\ell operators. Our analysis of BKγB \to K^* \gamma, BK()ˉB \to K^{(*)} \bar\ell\ell and BsμˉμB_s \to \bar\mu\mu decays is the first to harness the full power of the Bayesian approach: all major sources of theory uncertainty explicitly enter as nuisance parameters. Exploiting the latest measurements, the fit reveals a flipped-sign solution in addition to a Standard-Model-like solution for the couplings CiC_i. Each solution contains about half of the posterior probability, and both have nearly equal goodness of fit. The Standard Model prediction is close to the best-fit point. No New Physics contributions are necessary to describe the current data. Benefitting from the improved posterior knowledge of the nuisance parameters, we predict ranges for currently unmeasured, optimized observables in the angular distributions of BK(Kπ)ˉB\to K^*(\to K\pi)\,\bar\ell\ell.Comment: 42 pages, 8 figures; v2: Using new lattice input for f_Bs, considering Bs-mixing effects in BR[B_s->ll]. Main results and conclusion unchanged, matches journal versio
    corecore