244 research outputs found
Improved navigation by combining VOR/DME information with air or inertial data
The improvement was determined in navigational accuracy obtainable by combining VOR/DME information (from one or two stations) with air data (airspeed and heading) or with data from an inertial navigation system (INS) by means of a maximum-likelihood filter. It was found that the addition of air data to the information from one VOR/DME station reduces the RMS position error by a factor of about 2, whereas the addition of inertial data from a low-quality INS reduces the RMS position error by a factor of about 3. The use of information from two VOR/DME stations with air or inertial data yields large factors of improvement in RMS position accuracy over the use of a single VOR/DME station, roughly 15 to 20 for the air-data case and 25 to 35 for the inertial-data case. As far as position accuracy is concerned, at most one VOR station need be used. When continuously updating an INS with VOR/DME information, the use of a high-quality INS (0.01 deg/hr gyro drift) instead of a low-quality INS (1.0 deg/hr gyro drift) does not substantially improve position accuracy
Real-time human action recognition on an embedded, reconfigurable video processing architecture
Copyright @ 2008 Springer-Verlag.In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine (SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. “motion history image”) class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfiured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments.DTI and Broadcom Ltd
Fusion of Single View Soft k-NN Classifiers for Multicamera Human Action Recognition
Proceedings of: 5th International Conference on Hybrid Artificial Intelligence Systems (HAIS 2010). San Sebastián, Spain, June 23-25, 2010This paper presents two different classifier fusion algorithms applied in the domain of Human Action Recognition from video. A set of cameras observes a person performing an action from a predefined set. For each camera view a 2D descriptor is computed and a posterior on the performed activity is obtained using a soft classifier. These posteriors are combined using voting and a bayesian network to obtain a single belief measure to use for the final decision on the performed action. Experiments are conducted with different low level frame descriptors on the IXMAS dataset, achieving results comparable to state of the art 3D proposals, but only performing 2D processing.This work was supported in part by Projects CICYT
TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, CAM
CONTEXTS (S2009/TIC-1485) and DPS2008-07029-C02-02Publicad
Multicamera Action Recognition with Canonical Correlation Analysis and Discriminative Sequence Classification
Proceedings of: 4th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2011, La Palma, Canary Islands, Spain, May 30 - June 3, 2011.This paper presents a feature fusion approach to the recognition of human actions from multiple cameras that avoids the computation of the 3D visual hull. Action descriptors are extracted for each one of the camera views available and projected into a common subspace that maximizes the correlation between each one of the components of the projections. That common subspace is learned using Probabilistic Canonical Correlation Analysis. The action classification is made in that subspace using a discriminative classifier. Results of the proposed method are shown for the classification of the IXMAS dataset.Publicad
A chemotactic-based model for spatial activity recognition
Spatial activity recognition in everyday environments is particularly challenging due to noise incorporated during video-tracking. We address the noise issue of spatial recognition with a biologically inspired chemotactic model that is capable of handling noisy data. The model is based on bacterial chemotaxis, a process that allows bacteria to survive by changing motile behaviour in relation to environmental dynamics. Using chemotactic principles, we propose the chemotactic model and evaluate its classification performance in a smart house environment. The model exhibits high classification accuracy (99%) with a diverse 10 class activity dataset and outperforms the discrete hidden Markov model (HMM). High accuracy (>89%) is also maintained across small training sets and through incorporation of varying degrees of artificial noise into testing sequences. Importantly, unlike other bottom–up spatial activity recognition models, we show that the chemotactic model is capable of recognizing simple interwoven activities
Inductive learning spatial attention
This paper investigates the automatic induction of spatial attention
from the visual observation of objects manipulated
on a table top. In this work, space is represented in terms of
a novel observer-object relative reference system, named Local
Cardinal System, defined upon the local neighbourhood
of objects on the table. We present results of applying the
proposed methodology on five distinct scenarios involving
the construction of spatial patterns of coloured blocks
A First Order Predicate Logic Formulation of the 3D Reconstruction Problem and its Solution Space
This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added
Kernelized Multiview Projection for Robust Action Recognition
Conventional action recognition algorithms adopt a single type of feature or a simple concatenation of multiple features. In this paper, we propose to better fuse and embed different feature representations for action recognition using a novel spectral coding algorithm called Kernelized Multiview Projection (KMP). Computing the kernel matrices from different features/views via time-sequential distance learning, KMP can encode different features with different weights to achieve a low-dimensional and semantically meaningful subspace where the distribution of each view is sufficiently smooth and discriminative. More crucially, KMP is linear for the reproducing kernel Hilbert space, which allows it to be competent for various practical applications. We demonstrate KMP’s performance for action recognition on five popular action datasets and the results are consistently superior to state-of-the-art techniques
Towards estimating computer users' mood from interaction behaviour with keyboard and mouse
The purpose of this exploratory research was to study the relationship between the mood of computer users and their use of keyboard and mouse to examine the possibility of creating a generic or individualized mood measure. To examine this, a field study (n = 26) and a controlled study (n = 16) were conducted. In the field study, interaction data and self-reported mood measurements were collected during normal PC use over several days. In the controlled study, participants worked on a programming task while listening to high or low arousing background music. Besides subjective mood measurement, galvanic skin response (GSR) data was also collected. Results found no generic relationship between the interaction data and the mood data. However, the results of the studies found significant average correlations between mood measurement and personalized regression models based on keyboard and mouse interaction data. Together the results suggest that individualized mood prediction is possible from interaction behaviour with keyboard and mouse
- …
