2,479 research outputs found

    Enhancing of the in-plane FFLO-state critical temperature in heterostructures by the orbital effect of the magnetic field

    Full text link
    It is well-known that the orbital effect of the magnetic field suppresses superconducting TcT_c. We show that for a system, which is in the Larkin-Ovchinnikov-Fulde-Ferrell (FFLO) state at zero external magnetic field, the orbital effect of an applied magnetic field can lead to the enhancement of the critical temperature higher than TcT_c at zero field. We concentrate on two systems, where the in-plane FFLO-state was predicted recently. These are equilibrium S/F bilayers and S/N bilayers under nonequilibrium quasiparticle distribution. However, it is suggested that such an effect can take place for any plane superconducting heterostructure, which is in the in-plane FFLO-state (or is close enough to it) at zero applied field.Comment: 6 pages, 4 figures, extended versio

    Influence of the atomic-scale inhomogeneity of the pair interaction on extracted from the STM spectra characteristics of high-TcT_c superconductors

    Full text link
    The influence of the atomic-scale inhomogeneities of the pairing interaction strength on the superconducting order parameter and the conductance spectra measurable by STM is studied in the framework of weak-coupling BCS-like theory for two-dimensional lattice model. First of all, it is found that the inhomogeneity having the form of atomic-scale regions of enhanced pair interaction increases the ratio of the local low-temperature gap in differential conductance spectra to the local temperature of vanishing the gap 2Δg/Tp2\Delta_g/T_p. Even in the framework of mean-field treatment this ratio is shown to be larger than the one corresponding to the homogeneous case. It is shown that the effect of thermal phase fluctuations of the superconducting order parameter can further increase this ratio. Taking them into account in the framework of a toy model we obtained the ratio 2Δg/Tp2\Delta_g/T_p to be 78\sim 7-8. It is found that the additional atomic-scale hopping element disorder and weak potential scatterers, which can also take place in cuprate materials, have no considerable effect on the statistical properties of the system, including the distribution of the gaps, TpT_p and the ratio 2Δg/Tp2\Delta_g/T_p. The second consequence of the atomic-scale order parameter inhomogeneity is the anticorrelation between the low-temperature gap and the high-temperature zero-bias conductance. The obtained results could bear a relation to recent STM measurements.Comment: 14 pages, 13 figure

    Spin torques and magnetic texture dynamics driven by the supercurrent in superconductor/ferromagnet structures

    Full text link
    We introduce the general formalism to describe spin torques induced by the supercurrents injected from the adjacent superconducting electrodes into the spin-textured ferromagnets. By considering the adiabatic limit for the equal-spin superconducting correlations in the ferromagnet we show that the supercurrent can generate both the field-like spin transfer torque and the spin-orbital torque. These dissipationless spin torques are expressed through the current-induced corrections to the effective field derived from the system energy. The general formalism is applied to show that the supercurrent can either shift or move the magnetic domain walls depending on their structure and the type of spin-orbital interaction in the system. These results can be used for the prediction and interpretation of the experiments studying magnetic texture dynamics in superconductor/ferromagnet/superconductor Josephson junctions and other hybrid structures.Comment: published version, some typos are correcte

    Order parameter sign-reversal near s±s_\pm-superconductor surface

    Full text link
    The superconducting order parameter and LDOS spectra near an impenetrable surface are studied on the basis of selfconsistent calculations for a two band superconductor with nodeless extended s-+wave order parameter symmetry, as possibly realized in Fe-based high-temperature superconductors. It is found that for a wide range of parameters the spatial behavior of the order parameter at a surface is not reduced to a trivial suppression. If the interband scattering at a surface is of the order of the intraband one or dominates it, it can be energetically favorable to change the symmetry of the superconducting state near the surface from s±s_{\pm} to conventional s-wave. The range of existing this surface conventional superconductivity is very sensitive to the relative values of interband and intraband pairing potentials. It is shown that the LDOS spectra near the surface can qualitatively differ upon calculating with and without taking into account the selfconsistency of the order parameter.Comment: 5 pages, 5 figure
    corecore