661 research outputs found
Investigations of Protective Coatings for Castings of High-manganese Cast Steels
When cast steel castings are made in moulding sands on matrices of high-silica sand, which has a low fire resistance the problem of theso-called chemical penetration is distinctly visible. Whereas this effect appears to a small degree only when moulding sand matrices are of chromite, zircon or olivine sands. Therefore in case of making castings of high-manganese cast steel (e.g. Hadfield steel) sands not containing free silica should be applied (e.g. olivine sand) or in case of a high-silica matrix protective coatings for moulds and cores should be used. Two protective coatings, magnesite alcoholic (marked as coating 1 and coating 2) originated from different producers and intended for moulds for castings of the Hadfield steel, were selected for investigations. Examinations of the basic properties were performed for these coatings: viscosity, thermal analysis, sedimentation properties, wear resistance. In order to estimate the effectiveness of protective coatings the experimental castings were prepared. When applying coating 1, the surface quality of the casting was worse and traces of interaction between the casting material (cast steel) and the coating were seen. When protective coating 2 was used none interactions were seen and the surface quality was better
Conclusions from CDF Results on CP Violation in D^0 \to \pi^+\pi^-, K^+K^- and Future Tasks
Within the Standard Model (SM) one predicts both direct and indirect CP
violation in D^0 \to \pi^+\pi^-, K^+K^- transitions, although the effects are
tiny: Indirect CP asymmetry cannot exceed O(10^{-4}), probably even O(10^{-5});
direct effects are estimated at not larger than 10^{-4}. At B factories direct
and indirect asymmetries have been studied with /\tau_{D^0} ~ 1; no CP
asymmetry was found with an upper bound of about 1%. CDF has shown intriguing
data on CP violation in D^0 \to \pi^+\pi^- [K^+K^-] with /\tau_{D^0} ~ 2.4
[2.65]. Also, CDF has not seen any CP violation. For direct CP asymmetry, CDF
has a sensitivity similar to the combination of the B factories, yet for
indirect CP violation it yields a significantly smaller sensitivity of
a_{cp}^{ind}=(-0.01 +- 0.06_{stat} +- 0.05_{syst})% due to it being based on
longer decay times. New Physics models (NP) like Little Higgs Models with
T-Parity (LHT) can produce an indirect CP asymmetry up to 1%; CDF's findings
thus cover the upper range of realistic NP predictions ~ 0.1 - 1%. One hopes
that LHCb and a Super-Flavour Factory will probe the lower range down to
~0.01%. Such non-ad-hoc NP like LHT cannot enhance direct CP violation
significantly over the SM level in D^0 \to \pi^+\pi^-, K^+K^- and D^{\pm} \to
\pi^{\pm}K^+K^- transitions, but others might well do so.Comment: 11 pages, 1 figure. V2 has minor corrections and corresponds to the
published versio
Investigation of chlorine radical chemistry in the Eyjafjallajkull volcanic plume using observed depletions in non-methane hydrocarbons
As part of the effort to understand volcanic plume composition and chemistry during the eruption of the Icelandic volcano Eyjafjallajkull, the CARIBIC atmospheric observatory was deployed for three special science flights aboard a Lufthansa passenger aircraft. Measurements made during these flights included the collection of whole air samples, which were analyzed for non-methane hydrocarbons (NMHCs). Hydrocarbon concentrations in plume samples were found to be reduced to levels below background, with relative depletions characteristic of reaction with chlorine radicals (Cl). Recent observations of halogen oxides in volcanic plumes provide evidence for halogen radical chemistry, but quantitative data for free halogen radical concentrations in volcanic plumes were absent. Here we present the first observation-based calculations of Cl radical concentrations in volcanic plumes, estimated from observed NMHC depletions. Inferred Cl concentrations were between 1.3 × 10 and 6.6 × 10 Cl cm. The relationship between NMHC variability and local lifetimes was used to investigate the ratio between OH and Cl within the plume, with [OH]/[Cl] estimated to be ∼37. Copyright 2011 by the American Geophysical Union
- …
