537 research outputs found
A New Sample of Cool Subdwarfs from SDSS: Properties and Kinematics
We present a new sample of M subdwarfs compiled from the 7th data release of
the Sloan Digital Sky Survey. With 3517 new subdwarfs, this new sample
significantly increases the number of spectroscopically confirmed low-mass
subdwarfs. This catalog also includes 905 extreme and 534 ultra sudwarfs. We
present the entire catalog including observed and derived quantities, and
template spectra created from co-added subdwarf spectra. We show color-color
and reduced proper motion diagrams of the three metallicity classes, which are
shown to separate from the disk dwarf population. The extreme and ultra
subdwarfs are seen at larger values of reduced proper motion as expected for
more dynamically heated populations. We determine 3D kinematics for all of the
stars with proper motions. The color-magnitude diagrams show a clear separation
of the three metallicity classes with the ultra and extreme subdwarfs being
significantly closer to the main sequence than the ordinary subdwarfs. All
subdwarfs lie below (fainter) and to the left (bluer) of the main sequence.
Based on the average velocities and their dispersions, the extreme
and ultra subdwarfs likely belong to the Galactic halo, while the ordinary
subdwarfs are likely part of the old Galactic (or thick) disk. An extensive
activity analysis of subdwarfs is performed using H emission and 208
active subdwarfs are found. We show that while the activity fraction of
subdwarfs rises with spectral class and levels off at the latest spectral
classes, consistent with the behavior of M dwarfs, the extreme and ultra
subdwarfs are basically flat.Comment: 66 pages, 23 figures, accepted in Ap
Hunting The Most Distant Stars in the Milky Way: Methods and Initial Results
We present a new catalog of 404 M giant candidates found in the UKIRT
Infrared Deep Sky Survey (UKIDSS). The 2,400 deg available in the UKIDSS
Large Area Survey Data Release 8 resolve M giants through a volume four times
larger than that of the entire Two Micron All Sky Survey. Combining
near-infrared photometry with optical photometry and proper motions from the
Sloan Digital Sky Survey yields an M giant candidate catalog with less M dwarf
and quasar contamination than previous searches for similarly distant M giants.
Extensive follow-up spectroscopy of this sample will yield the first map of our
Galaxy's outermost reaches over a large area of sky. Our initial spectroscopic
follow-up of 30 bright candidates yielded the positive identification of
five M giants at distances kpc. Each of these confirmed M giants
have positions and velocities consistent with the Sagittarius stream. The
fainter M giant candidates in our sample have estimated photometric distances
kpc (assuming = 0.0), but require further spectroscopic
verification. The photometric distance estimates extend beyond the Milky Way's
virial radius, and increase by for each 0.5 dex decrease in assumed
. Given the number of M giant candidates, initial selection efficiency,
and volume surveyed, we loosely estimate that at least one additional
Sagittarius-like accretion event could have contributed to the hierarchical
build-up of the Milky Way's outer halo.Comment: 16 pages, 11 figures, emulateapj format. Accepted by A
The Most Distant Stars in the Milky Way
We report on the discovery of the most distant Milky Way (MW) stars known to
date: ULAS J001535.72015549.6 and ULAS J074417.48253233.0. These stars
were selected as M giant candidates based on their infrared and optical colors
and lack of proper motions. We spectroscopically confirmed them as outer halo
giants using the MMT/Red Channel spectrograph. Both stars have large estimated
distances, with ULAS J001535.72015549.6 at kpc and ULAS
J074417.48253233.0 at 238 64 kpc, making them the first MW stars
discovered beyond 200 kpc. ULAS J001535.72015549.6 and ULAS
J074417.48253233.0 are both moving away from the Galactic center at km s and km s, respectively. Using their
distances and kinematics, we considered possible origins such as: tidal
stripping from a dwarf galaxy, ejection from the MW's disk, or membership in an
undetected dwarf galaxy. These M giants, along with two inner halo giants that
were also confirmed during this campaign, are the first to map largely
unexplored regions of our Galaxy's outer halo.Comment: Accepted and in print by ApJL. Seven pages, 2 figure
The Effects of Close Companions (and Rotation) on the Magnetic Activity of M Dwarfs
We present a study of close white dwarf and M dwarf (WD+dM) binary systems
and examine the effect that a close companion has on the magnetic field
generation in M dwarfs. We use a base sample of 1602 white dwarf -- main
sequence binaries from Rebassa et al. to develop a set of color cuts in GALEX,
SDSS, UKIDSS, and 2MASS color space to construct a sample of 1756 WD+dM
high-quality pairs from the SDSS DR8 spectroscopic database. We separate the
individual WD and dM from each spectrum using an iterative technique that
compares the WD and dM components to best-fit templates. Using the absolute
height above the Galactic plane as a proxy for age, and the H{\alpha} emission
line as an indicator for magnetic activity, we investigate the age-activity
relation for our sample for spectral types \leqM7. Our results show that
early-type M dwarfs (\leqM4) in close binary systems are more likely to be
active and have longer activity lifetimes compared to their field counterparts.
However, at a spectral type of M5 (just past the onset of full convection in M
dwarfs), the activity fraction and lifetimes of WD+dM binary systems becomes
more comparable to that of the field M dwarfs. One of the implications of
having a close binary companion is presumed to be increased stellar rotation
through disk-disruption, tidal effects, or angular momentum exchange. Thus, we
interpret the similarity in activity behavior between late-type dMs in WD+dM
pairs and late-type field dMs to be due to a decrease in sensitivity in close
binary companions (or stellar rotation), which has implications for the nature
of magnetic activity in fully-convective stars. (Abridged)Comment: 21 pages, 19 figures, emulateapj style, accepted to Astronomical
Journal June 28, 201
A Universal Stellar Initial Mass Function? A Critical Look at Variations
Few topics in astronomy initiate such vigorous discussion as whether or not
the initial mass function (IMF) of stars is universal, or instead sensitive to
the initial conditions of star formation. The distinction is of critical
importance: the IMF influences most of the observable properties of stellar
populations and galaxies, and detecting variations in the IMF could provide
deep insights into the process by which stars form. In this review, we take a
critical look at the case for IMF variations, with a view towards whether other
explanations are sufficient given the evidence. Studies of the field, local
young clusters and associations, and old globular clusters suggest that the
vast majority were drawn from a "universal" IMF: a power-law of Salpeter index
() above a few solar masses, and a log normal or shallower
power-law () between a few tenths and a few solar masses
(ignoring the effects of unresolved binaries). The shape and universality of
the IMF at the stellar-substellar boundary is still under investigation and
uncertainties remain large, but most observations are consistent with a IMF
that declines () well below the hydrogen burning limit.
Observations of resolved stellar populations and the integrated properties of
most galaxies are also consistent with a "universal IMF", suggesting no gross
variations in the IMF over much of cosmic time. There are indications of
"non-standard" IMFs in specific local and extragalactic environments, which
clearly warrant further study. Nonetheless, there is no clear evidence that the
IMF varies strongly and systematically as a function of initial conditions
after the first few generations of stars.Comment: 49 pages, 5 figures, to appear in Annual Reviews of Astronomy and
Astrophysics (2010, volume 48
A survey for planetary-mass brown dwarfs in the Chamaeleon I star-forming region
We have performed a search for planetary-mass brown dwarfs in the Chamaeleon
I star-forming region using proper motions and photometry measured from optical
and infrared images from the Spitzer Space Telescope, the Hubble Space
Telescope, and ground-based facilities. Through near-infrared spectroscopy at
Gemini Observatory, we have confirmed six of the candidates as new late-type
members of Chamaeleon I >M7.75. One of these objects, Cha J11110675-7636030,
has the faintest extinction-corrected M_K among known members, which
corresponds to a mass of 3-6 M_Jup according to evolutionary models. That
object and two other new members have redder mid-IR colors than young
photospheres at <M9.5, which may indicate the presence of disks. However, since
those objects may be later than M9.5 and the mid-IR colors of young
photospheres are ill-defined at those types, we cannot determine conclusively
whether color excesses from disks are present. If Cha J11110675-7636030 does
have a disk, it would be a contender for the least-massive known brown dwarf
with a disk. Since the new brown dwarfs that we have found extend below our
completeness limit of 6-10 M_Jup, deeper observations are needed to measure the
minimum mass of the initial mass function in Chamaeleon I.Comment: Accepted for publication in The Astronomical Journal; 8 pages, 12
figures, 1 machine readable tables avaiable at at
https://www.dropbox.com/s/e5oms3bb9ing4ap/tab1_2017.txt?dl=
Near-infrared Detection of WD 0806-661 B with the Hubble Space Telescope
WD 0806-661 B is one of the coldest known brown dwarfs (T=300-345 K) based on
previous mid-infrared photometry from the Spitzer Space Telescope. In addition,
it is a benchmark for testing theoretical models of brown dwarfs because its
age and distance are well-constrained via its primary star (2+/-0.5 Gyr,
19.2+/-0.6 pc). We present the first near-infrared detection of this object,
which has been achieved through F110W imaging (~Y+J) with the Wide Field Camera
3 on board the Hubble Space Telescope. We measure a Vega magnitude of
m110=25.70+/-0.08, which implies J~25.0. When combined with the Spitzer
photometry, our estimate of J helps to better define the empirical sequence of
the coldest brown dwarfs in M4.5 versus J-[4.5]. The positions of WD 0806-661 B
and other Y dwarfs in that diagram are best matched by the cloudy models of
Burrows et al. and the cloudless models of Saumon et al., both of which employ
chemical equilibrium. The calculations by Morley et al. for 50% cloud coverage
differ only modestly from the data. Spectroscopy would enable a more stringent
test of the models, but based on our F110W measurement, such observations are
currently possible only with Hubble, and would require at least ~10 orbits to
reach a signal-to-noise ratio of ~5
The Very Short Period M Dwarf Binary SDSS J001641-000925
We present follow-up observations and analysis of the recently discovered
short period low-mass eclipsing binary, SDSS J001641-000925. With an orbital
period of 0.19856 days, this system has one of the shortest known periods for
an M dwarf binary system. Medium-resolution spectroscopy and multi-band
photometry for the system are presented. Markov chain Monte Carlo modeling of
the light curves and radial velocities yields estimated masses for the stars of
M1 = 0.54 +/- 0.07 Msun and M2 = 0.34 +/- 0.04 Msun, and radii of R1 = 0.68 +/-
0.03 Rsun and R2 = 0.58 +/- 0.03 Rsun respectively. This solution places both
components above the critical Roche overfill limit, providing strong evidence
that SDSS J001641-000925 is the first verified M-dwarf contact binary system.
Within the follow-up spectroscopy we find signatures of non-solid body rotation
velocities, which we interpret as evidence for mass transfer or loss within the
system. In addition, our photometry samples the system over 9 years, and we
find strong evidence for period decay at the rate of dP/dt ~8 s/yr. Both of
these signatures raise the intriguing possibility that the system is in
over-contact, and actively losing angular momentum, likely through mass loss.
This places SDSS J001641-000925 as not just the first M-dwarf over-contact
binary, but one of the few systems of any spectral type known to be actively
undergoing coalescence. Further study SDSS J001641-000925 is on-going to verify
the nature of the system, which may prove to be a unique astrophysical
laboratory.Comment: 11 figures, ApJ Accepte
M Dwarfs in SDSS Stripe 82: Photometric Light Curves and Flare Rate Analysis
We present a flare rate analysis of 50,130 M dwarf light curves in SDSS
Stripe 82. We identified 271 flares using a customized variability index to
search ~2.5 million photometric observations for flux increases in the u- and
g-bands. Every image of a flaring observation was examined by eye and with a
PSF-matching and image subtraction tool to guard against false positives.
Flaring is found to be strongly correlated with the appearance of H-alpha in
emission in the quiet spectrum. Of the 99 flare stars that have spectra, we
classify 8 as relatively inactive. The flaring fraction is found to increase
strongly in stars with redder colors during quiescence, which can be attributed
to the increasing flare visibility and increasing active fraction for redder
stars. The flaring fraction is strongly correlated with |Z| distance such that
most stars that flare are within 300 pc of the Galactic plane. We derive flare
u-band luminosities and find that the most luminous flares occur on the
earlier-type M dwarfs. Our best estimate of the lower limit on the flaring rate
(averaged over Stripe 82) for flares with \Delta u \ge 0.7 magnitudes on stars
with u < 22 is 1.3 flares hour^-1 square degree^-1 but can vary significantly
with the line-of-sight.Comment: 44 pages, 13 figure
- …
