9 research outputs found

    The early interaction of the outer membrane protein PhoE with the periplasmic chaperone Skp occurs at the cytoplasmic membrane.

    Get PDF
    Spheroplasts were used to study the early interactions of newly synthesized outer membrane protein PhoE with periplasmic proteins employing a protein cross-linking approach. Newly translocated PhoE protein could be cross-linked to the periplasmic chaperone Skp at the periplasmic side of the inner membrane. To study the timing of this interaction, a PhoE-dihydrofolate reductase hybrid protein was constructed that formed translocation intermediates, which had the PhoE moiety present in the periplasm and the dihydrofolate reductase moiety tightly folded in the cytoplasm. The hybrid protein was found to cross-link to Skp, indicating that PhoE closely interacts with the chaperone when the protein is still in a transmembrane orientation in the translocase. Removal of N-terminal parts of PhoE protein affected Skp binding in a cumulative manner, consistent with the presence of two Skp-binding sites in that region. In contrast, deletion of C-terminal parts resulted in variable interactions with Skp, suggesting that interaction of Skp with the N-terminal region is influenced by parts of the C terminus of PhoE protein. Both the soluble as well as the membrane-associated Skp protein were found to interact with PhoE. The latter form is proposed to be involved in the initial interaction with the N-terminal regions of the outer membrane protein

    Membrane Assembly in Bacteria

    No full text

    PFMG2025–integrating genomic medicine into the national healthcare system in France

    No full text
    International audienceIntegrating genomic medicine into healthcare systems is a health policy challenge that requires continuously transferring scientific advances into clinics and ensuring equal access for patients. France was one of the first countries to integrate genome sequencing into clinical practice at a nationwide level, with the ambition to provide more accurate diagnostics and personalized treatments. Since 2016, the French government has invested €239M in the 2025 French Genomic Medicine Initiative (PFMG2025) which has so far focused on patients with rare diseases (RD), cancer genetic predisposition (CGP) and cancers. PFMG2025 has addressed numerous challenges to set up an operational organizational framework. As of December the 31st 2023, 12,737 results were returned to prescribers for RD/CGP patients (median delivery time: 202 days, diagnostic yield: 30.6%) and 3109 for cancer patients (median delivery time: 45 days). PFMG2025's future priorities encompass ensuring economic sustainability, strengthening links with research, empowering patients and practitioners, and fostering collaborations with European partners.Funding As of December the 31st 2023, €239M have been invested by the French government.</div

    C. Literaturwissenschaft.

    No full text
    corecore