777 research outputs found
Distance Constraint Satisfaction Problems
We study the complexity of constraint satisfaction problems for templates
that are first-order definable in , the integers with
the successor relation. Assuming a widely believed conjecture from finite
domain constraint satisfaction (we require the tractability conjecture by
Bulatov, Jeavons and Krokhin in the special case of transitive finite
templates), we provide a full classification for the case that Gamma is locally
finite (i.e., the Gaifman graph of has finite degree). We show that
one of the following is true: The structure Gamma is homomorphically equivalent
to a structure with a d-modular maximum or minimum polymorphism and
can be solved in polynomial time, or is
homomorphically equivalent to a finite transitive structure, or
is NP-complete.Comment: 35 pages, 2 figure
New Ramsey Classes from Old
Let C_1 and C_2 be strong amalgamation classes of finite structures, with
disjoint finite signatures sigma and tau. Then C_1 wedge C_2 denotes the class
of all finite (sigma cup tau)-structures whose sigma-reduct is from C_1 and
whose tau-reduct is from C_2. We prove that when C_1 and C_2 are Ramsey, then
C_1 wedge C_2 is also Ramsey. We also discuss variations of this statement, and
give several examples of new Ramsey classes derived from those general results.Comment: 11 pages. In the second version, to be submitted for journal
publication, a number of typos has been removed, and a grant acknowledgement
has been adde
Cores of Countably Categorical Structures
A relational structure is a core, if all its endomorphisms are embeddings.
This notion is important for computational complexity classification of
constraint satisfaction problems. It is a fundamental fact that every finite
structure has a core, i.e., has an endomorphism such that the structure induced
by its image is a core; moreover, the core is unique up to isomorphism. Weprove
that every \omega -categorical structure has a core. Moreover, every
\omega-categorical structure is homomorphically equivalent to a model-complete
core, which is unique up to isomorphism, and which is finite or \omega
-categorical. We discuss consequences for constraint satisfaction with \omega
-categorical templates
Topological Birkhoff
One of the most fundamental mathematical contributions of Garrett Birkhoff is
the HSP theorem, which implies that a finite algebra B satisfies all equations
that hold in a finite algebra A of the same signature if and only if B is a
homomorphic image of a subalgebra of a finite power of A. On the other hand, if
A is infinite, then in general one needs to take an infinite power in order to
obtain a representation of B in terms of A, even if B is finite.
We show that by considering the natural topology on the functions of A and B
in addition to the equations that hold between them, one can do with finite
powers even for many interesting infinite algebras A. More precisely, we prove
that if A and B are at most countable algebras which are oligomorphic, then the
mapping which sends each function from A to the corresponding function in B
preserves equations and is continuous if and only if B is a homomorphic image
of a subalgebra of a finite power of A.
Our result has the following consequences in model theory and in theoretical
computer science: two \omega-categorical structures are primitive positive
bi-interpretable if and only if their topological polymorphism clones are
isomorphic. In particular, the complexity of the constraint satisfaction
problem of an \omega-categorical structure only depends on its topological
polymorphism clone.Comment: 21 page
Schaefer's theorem for graphs
Schaefer's theorem is a complexity classification result for so-called
Boolean constraint satisfaction problems: it states that every Boolean
constraint satisfaction problem is either contained in one out of six classes
and can be solved in polynomial time, or is NP-complete.
We present an analog of this dichotomy result for the propositional logic of
graphs instead of Boolean logic. In this generalization of Schaefer's result,
the input consists of a set W of variables and a conjunction \Phi\ of
statements ("constraints") about these variables in the language of graphs,
where each statement is taken from a fixed finite set \Psi\ of allowed
quantifier-free first-order formulas; the question is whether \Phi\ is
satisfiable in a graph.
We prove that either \Psi\ is contained in one out of 17 classes of graph
formulas and the corresponding problem can be solved in polynomial time, or the
problem is NP-complete. This is achieved by a universal-algebraic approach,
which in turn allows us to use structural Ramsey theory. To apply the
universal-algebraic approach, we formulate the computational problems under
consideration as constraint satisfaction problems (CSPs) whose templates are
first-order definable in the countably infinite random graph. Our method to
classify the computational complexity of those CSPs is based on a
Ramsey-theoretic analysis of functions acting on the random graph, and we
develop general tools suitable for such an analysis which are of independent
mathematical interest.Comment: 54 page
The Complexity of Combinations of Qualitative Constraint Satisfaction Problems
The CSP of a first-order theory is the problem of deciding for a given
finite set of atomic formulas whether is satisfiable. Let
and be two theories with countably infinite models and disjoint
signatures. Nelson and Oppen presented conditions that imply decidability (or
polynomial-time decidability) of under the
assumption that and are decidable (or
polynomial-time decidable). We show that for a large class of
-categorical theories the Nelson-Oppen conditions are not
only sufficient, but also necessary for polynomial-time tractability of
(unless P=NP)
- …
