1,903 research outputs found
Model for foreign languages blended learning of students at higher technical educational institutions
Writing and Reading antiferromagnetic MnAu: N\'eel spin-orbit torques and large anisotropic magnetoresistance
Antiferromagnets are magnetically ordered materials which exhibit no net
moment and thus are insensitive to magnetic fields. Antiferromagnetic
spintronics aims to take advantage of this insensitivity for enhanced
stability, while at the same time active manipulation up to the natural THz
dynamic speeds of antiferromagnets is possible, thus combining exceptional
storage density and ultra-fast switching. However, the active manipulation and
read-out of the N\'eel vector (staggered moment) orientation is challenging.
Recent predictions have opened up a path based on a new spin-orbit torque,
which couples directly to the N\'eel order parameter. This N\'eel spin-orbit
torque was first experimentally demonstrated in a pioneering work using
semimetallic CuMnAs. Here we demonstrate for MnAu, a good conductor with a
high ordering temperature suitable for applications, reliable and reproducible
switching using current pulses and readout by magnetoresistance measurements.
The symmetry of the torques agrees with theoretical predictions and a large
read-out magnetoresistance effect of more than ~ is reproduced by
ab initio transport calculations.Comment: 5 pages, 4 figure
A photoelectron spectroscopy study of the electronic structure evolution in CuInSe2-related compounds at changing copper content
Evolution of the valence-band structure at gradually increasing copper content has been analysed by x-ray photoelectron spectroscopy (XPS) in In2Se3, CuIn5Se8, CuIn3Se5, and CuInSe2 single crystals. A comparison of these spectra with calculated total and angular-momentum resolved density-of-states (DOS) revealed the main trends of this evolution. The formation of the theoretically predicted gap between the bonding and non-bonding states has been observed in both experimental XPS spectra and theoretical DOS
Electric-field-induced nematic-cholesteric transition and 3-D director structures in homeotropic cells
We study the phase diagram of director structures in cholesteric liquid
crystals of negative dielectric anisotropy in homeotropic cells of thickness d
which is smaller than the cholesteric pitch p. The basic control parameters are
the frustration ratio d/p and the applied voltage U. Fluorescence Confocal
Polarising Microscopy allows us to directly and unambiguously determine the 3-D
director structures. The results are of importance for potential applications
of the cholesteric structures, such as switchable gratings and eyewear with
tunable transparency based.Comment: Will be published in Physical Review
Preparation and optical characterization of Cu2ZnGeSe4 thin films
Cu2ZnGeSe4 (CZGSe) films have been fabricated by ion beam sputtering onto glass substrates at a substrate temperature of 300 and 420 K. CZGSe films were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, scanning electron microscopy and by the method of normal incidence transmittance and reflectance. XRD studies reveal an improved crystallinity of the polycrystalline CZGSe films with tetragonal structure when the substrate temperature was increased. The refraction index and extinction coefficient were extracted from the optical measurements. Spectral dependence of the absorption coefficient and the energy band gaps values of CZGSe films were also determinedFinancial supports from IRSES PVICOKEST 269167, MICINN projects (KEST-PV; ENE2010- 21541-C03-01/-02/-03) and FRCFB 13.820.05.11/BF projects are acknowledged. RC also acknowledges financial support from Spanish MINECO within the program Ramón y Cajal
(RYC-2011-08521
A Quartz-bearing Orthopyroxene-rich Websterite Xenolith from the Pannonian Basin, Western Hungary: Evidence for Release of Quartz-saturated Melts from a Subducted Slab
An unusual quartz-bearing orthopyroxene-rich websterite xenolith has been found in an alkali basaltic tuff at Szigliget, Bakony-Balaton Highland Volcanic Field (BBHVF), western Hungary. Ortho- and clinopyroxenes are enriched in light rare earth elements (LREE), middle REE and Ni, and depleted in Nb, Ta, Sr and Ti compared with ortho- and clinopyroxenes occurring in either peridotite or lower crustal granulite xenoliths from the BBHVF. Both ortho- and clinopyroxenes in the xenolith contain primary and secondary silicate melt inclusions, and needle-shaped or rounded quartz inclusions. The melt inclusions are rich in SiO2 and alkalis and poor in MgO, FeO and CaO. They are strongly enriched in LREE and large ion lithophile elements, and display negative Nb, Ta and Sr anomalies, and slightly positive Pb anomalies. The xenolith is interpreted to represent a fragment of an orthopyroxene-rich body that crystallized in the upper mantle from a hybrid melt that formed by interaction of mantle peridotite with a quartz-saturated silicate melt that was released from a subducted oceanic slab. Although the exact composition of the slab melt cannot be determined, model calculations on major and trace elements suggest involvement of a metasedimentary componen
A Quartz-bearing Orthopyroxene-rich Websterite Xenolith from the Pannonian Basin, Western Hungary: Evidence for Release of Quartz-saturated Melts from a Subducted Slab
An unusual quartz-bearing orthopyroxene-rich websterite xenolith has been found in an alkali basaltic tuff at Szigliget, Bakony-Balaton Highland Volcanic Field (BBHVF), western Hungary. Ortho- and clinopyroxenes are enriched in light rare earth elements (LREE), middle REE and Ni, and depleted in Nb, Ta, Sr and Ti compared with ortho- and clinopyroxenes occurring in either peridotite or lower crustal granulite xenoliths from the BBHVF. Both ortho- and clinopyroxenes in the xenolith contain primary and secondary silicate melt inclusions, and needle-shaped or rounded quartz inclusions. The melt inclusions are rich in SiO2 and alkalis and poor in MgO, FeO and CaO. They are strongly enriched in LREE and large ion lithophile elements, and display negative Nb, Ta and Sr anomalies, and slightly positive Pb anomalies. The xenolith is interpreted to represent a fragment of an orthopyroxene-rich body that crystallized in the upper mantle from a hybrid melt that formed by interaction of mantle peridotite with a quartz-saturated silicate melt that was released from a subducted oceanic slab. Although the exact composition of the slab melt cannot be determined, model calculations on major and trace elements suggest involvement of a metasedimentary componen
Spectroscopic ellipsometry study of Cu2ZnSnS4 bulk poly-crystals
The linear optical properties of Cu2ZnSnS4 bulk poly-crystals have been investigated using spectroscopic ellipsometry in the range of 1.2-4.6 eV at room temperature. The characteristic features identified in the optical spectra are explained by using the Adachi analytical model for the interband transitions at the corresponding critical points in the Brillouin zone. The experimental data have been modeled over the entire spectral range taking into account the lowest E0 transition near the fundamental absorption edge and E1A and E1B higher energy interband transitions. In addition, the spectral dependences of the refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity values have been accurately determined and are provided since they are essential data for the design of Cu2ZnSnS4 based optoelectronic devicesThe research leading to the presented results was partially
supported by the European Project INFINITE-CELL (Ref.
H2020-MSCA-RISE-2017-777968, 2017–2021, www.infinitecell.eu)
and the Spanish MINECO Projects “WINCOST”
(ENE2016-80788-C5-2-R) and PHOTOMANA (TEC2015-
69916-C2-1-R). The authors from the Institute of Applied
Physics appreciate the financial support from STCU 6224 and
from the Institutional Project No. CSSDT 15.817.02.04
- …
