2,235 research outputs found
The 21st century propulsion
The prediction of future space travel in the next millennium starts by examining the past and extrapolating into the far future. Goals for the 21st century include expanded space travel and establishment of permanent manned outposts, and representation of Lunar and Mars outposts as the most immediate future in space. Nuclear stage design/program considerations; launch considerations for manned Mars missions; and far future propulsion schemes are outlined
Competing mechanisms of chiral symmetry breaking in a generalized Gross-Neveu model
Chiral symmetry of the 2-dimensional chiral Gross-Neveu model is broken
explicitly by a bare mass term as well as a splitting of scalar and
pseudo-scalar coupling constants. The vacuum and light hadrons - mesons and
baryons which become massless in the chiral limit - are explored analytically
in leading order of the derivative expansion by means of a double sine-Gordon
equation. Depending on the parameters, this model features new phenomena as
compared to previously investigated 4-fermion models: spontaneous breaking of
parity, a non-trivial chiral vacuum angle, twisted kink-like baryons whose
baryon number reflects the vacuum angle, crystals with alternating baryons, and
appearance of a false vacuum.Comment: 8 pages, 7 figures; v2: typos correcte
Is dark matter an extra-dimensional effect?
We investigate the possibility that the observed behavior of test particles
outside galaxies, which is usually explained by assuming the presence of dark
matter, is the result of the dynamical evolution of particles in higher
dimensional space-times. Hence, dark matter may be a direct consequence of the
presence of an extra force, generated by the presence of extra-dimensions,
which modifies the dynamic law of motion, but does not change the intrinsic
properties of the particles, like, for example, the mass (inertia). We discuss
in some detail several possible particular forms for the extra force, and the
acceleration law of the particles is derived. Therefore, the constancy of the
galactic rotation curves may be considered as an empirical evidence for the
existence of the extra dimensions.Comment: 11 pages, no figures, accepted for publication in MPLA; references
adde
Evidence of Strong Correlations and Coherence-Incoherence Crossover in the Iron Pnictide Superconductor KFe2As2
Using resistivity, heat-capacity, thermal-expansion, and susceptibility
measurements we study the normal-state behavior of KFe2As2. We find that both
the Sommerfeld coefficient gamma = 103 mJ mol-1 K-2 and the Pauli
susceptibility chi = 4x10-4 are strongly enhanced, which confirm the existence
of heavy quasiparticles inferred from previous de Haas-van Alphen and ARPES
experiments. We discuss this large enhancement using a Gutzwiller slave-boson
mean-field calculation, which reveals the proximity of KFe2As2 to an
orbital-selective Mott transition. The temperature dependence of the magnetic
susceptibility and the thermal expansion provide strong experimental evidence
for the existence of a coherence-incoherence crossover, similar to what is
found in heavy fermion and ruthenate compounds, due to Hund's coupling between
orbitals
Very special relativity as relativity of dark matter: the Elko connection
In the very special relativity (VSR) proposal by Cohen and Glashow, it was
pointed out that invariance under HOM(2) is both necessary and sufficient to
explain the null result of the Michelson-Morely experiment. It is the quantum
field theoretic demand of locality, or the requirement of P, T, CP, or CT
invariance, that makes invariance under the Lorentz group a necessity.
Originally it was conjectured that VSR operates at the Planck scale; we propose
that the natural arena for VSR is at energies similar to the standard model,
but in the dark sector. To this end we provide an ab initio spinor
representation invariant under the SIM(2) avatar of VSR and construct a mass
dimension one fermionic quantum field of spin one half. This field turns out to
be a very close sibling of Elko and it exhibits the same striking property of
intrinsic darkness with respect to the standard model fields. In the new
construct, the tension between Elko and Lorentz symmetries is fully resolved.
We thus entertain the possibility that the symmetries underlying the standard
model matter and gauge fields are those of Lorentz, while the event space
underlying the dark matter and the dark gauge fields supports the algebraic
structure underlying VSR.Comment: 19 pages. Section 5 is new. Published version (modulo a footnote, and
a corrected typo
Gravastar energy conditions revisited
We consider the gravastar model where the vacuum phase transition between the
de Sitter interior and the Schwarzschild or Schwarzschild-de Sitter exterior
geometries takes place at a single spherical delta-shell. We derive sharp
analytic bounds on the surface compactness (2m/r) that follow from the
requirement that the dominant energy condition (DEC) holds at the shell. In the
case of Schwarzschild exterior, the highest surface compactness is achieved
with the stiff shell in the limit of vanishing (dark) energy density in the
interior. In the case of Schwarzschild-de Sitter exterior, in addition to the
gravastar configurations with the shell under surface pressure, gravastar
configurations with vanishing shell pressure (dust shells), as well as
configurations with the shell under surface tension, are allowed by the DEC.
Respective bounds on the surface compactness are derived for all cases. We also
consider the speed of sound on the shell as derived from the requirement that
the shell is stable against the radial perturbations. The causality requirement
(sound speed not exceeding that of light) further restricts the space of
allowed gravastar configurations.Comment: LaTeX/IOP-style, 16 pages, 2 figures, changes wrt v1: motivation for
eq. (6) clarified, several referecnes added (to appear in Class. Quantum
Grav.
Chiral Modulations in Curved Space I: Formalism
The goal of this paper is to present a formalism that allows to handle
four-fermion effective theories at finite temperature and density in curved
space. The formalism is based on the use of the effective action and zeta
function regularization, supports the inclusion of inhomogeneous and
anisotropic phases. One of the key points of the method is the use of a
non-perturbative ansatz for the heat-kernel that returns the effective action
in partially resummed form, providing a way to go beyond the approximations
based on the Ginzburg-Landau expansion for the partition function. The
effective action for the case of ultra-static Riemannian spacetimes with
compact spatial section is discussed in general and a series representation,
valid when the chemical potential satisfies a certain constraint, is derived.
To see the formalism at work, we consider the case of static Einstein spaces at
zero chemical potential. Although in this case we expect inhomogeneous phases
to occur only as meta-stable states, the problem is complex enough and allows
to illustrate how to implement numerical studies of inhomogeneous phases in
curved space. Finally, we extend the formalism to include arbitrary chemical
potentials and obtain the analytical continuation of the effective action in
curved space.Comment: 22 pages, 3 figures; version to appear in JHE
CMB constraints on noncommutative geometry during inflation
We investigate the primordial power spectrum of the density perturbations
based on the assumption that spacetime is noncommutative in the early stage of
inflation. Due to the spacetime noncommutativity, the primordial power spectrum
can lose rotational invariance. Using the k-inflation model and slow-roll
approximation, we show that the deviation from rotational invariance of the
primordial power spectrum depends on the size of noncommutative length scale
L_s but not on sound speed. We constrain the contributions from the spacetime
noncommutativity to the covariance matrix for the harmonic coefficients of the
CMB anisotropies using five-year WMAP CMB maps. We find that the upper bound
for L_s depends on the product of sound speed and slow-roll parameter.
Estimating this product using cosmological parameters from the five-year WMAP
results, the upper bound for L_s is estimated to be less than 10^{-27} cm at
99.7% confidence level.Comment: 8 pages, 1 figure, References added, Accepted for publication in EPJC
(submitted version
Firm finances, weather derivatives and geography
This paper considers some intellectual, practical and political dimensions of collaboration between human and physical geographers exploring how firms are using relatively new financial products – weather derivatives – to displace any costs of weather-related uncertainty and risk. The paper defines weather derivatives and indicates how they differ from weather insurance products before considering the geo-political, cultural and economic context for their creation. The paper concludes by reflecting on the challenges of research collaboration across the human–physical geography divide and suggests that while such initiatives may be undermined by a range of institutional and intellectual factors, conversations between physical and human geographers remain and are likely to become increasingly pertinent. The creation of a market in weather derivatives raises a host of urgent political and regulatory questions and the confluence of natural and social knowledges, co-existing within and through the geography academy, provides a constructive and creative basis from which to engage with this new market and wider discourses of uneven economic development and climate change
- …
