31,528 research outputs found

    Wilson-'t Hooft operators in four-dimensional gauge theories and S-duality

    Get PDF
    We study operators in four-dimensional gauge theories which are localized on a straight line, create electric and magnetic flux, and in the UV limit break the conformal invariance in the minimal possible way. We call them Wilson-'t Hooft operators, since in the purely electric case they reduce to the well-known Wilson loops, while in general they may carry 't Hooft magnetic flux. We show that to any such operator one can associate a maximally symmetric boundary condition for gauge fields on AdS^2\times S^2. We show that Wilson-'t Hooft operators are classifed by a pair of weights (electric and magnetic) for the gauge group and its magnetic dual, modulo the action of the Weyl group. If the magnetic weight does not belong to the coroot lattice of the gauge group, the corresponding operator is topologically nontrivial (carries nonvanishing 't Hooft magnetic flux). We explain how the spectrum of Wilson-'t Hooft operators transforms under the shift of the theta-angle by 2\pi. We show that, depending on the gauge group, either SL(2,Z) or one of its congruence subgroups acts in a natural way on the set of Wilson-'t Hooft operators. This can be regarded as evidence for the S-duality of N=4 super-Yang-Mills theory. We also compute the one-point function of the stress-energy tensor in the presence of a Wilson-'t Hooft operator at weak coupling.Comment: 32 pages, latex. v2: references added. v3: numerical factors corrected, other minor change

    Color superconductivity vs. pseudoscalar condensation in a three-flavor NJL model

    Full text link
    We calculate numerically the phase diagram of the three-flavor Nambu-Jona-Lasinio model at zero and finite temperature as a function of the up, down, and strange quark chemical potentials. We focus on the competition between pseudoscalar condensation and color superconductivity. We find that the two types of phases are separated by first-order transitions.Comment: 8 pages, 7 figures, revtex. References added, minor other changes, conclusions unchanged. To appear in PR

    Spontaneous electro-weak symmetry breaking and cold dark matter

    Full text link
    In the standard model, the weak gauge bosons and fermions obtain mass after spontaneous electro-weak symmetry breaking, which is realized through one fundamental scalar field, namely Higgs field. In this paper we study the simplest scalar cold dark matter model in which the scalar cold dark matter also obtains mass through interaction with the weak-doublet Higgs field, the same way as those of weak gauge bosons and fermions. Our study shows that the correct cold dark matter relic abundance within 3σ3\sigma uncertainty (0.093<Ωdmh2<0.129 0.093 < \Omega_{dm} h^2 < 0.129 ) and experimentally allowed Higgs boson mass (114.4mh208114.4 \le m_h \le 208 GeV) constrain the scalar dark matter mass within 48mS7848 \le m_S \le 78 GeV. This result is in excellent agreement with that of W. de Boer et.al. (5010050 \sim 100 GeV). Such kind of dark matter annihilation can account for the observed gamma rays excess (10σ10\sigma) at EGRET for energies above 1 GeV in comparison with the expectations from conventional Galactic models. We also investigate other phenomenological consequences of this model. For example, the Higgs boson decays dominantly into scalar cold dark matter if its mass lies within 486448 \sim 64 GeV.Comment: 4 Revtex4 pages, refs adde

    Thermodynamics of Higher Spin Black Holes in AdS3_3

    Get PDF
    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N,R)\times SL(N,R) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with W_N symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.Comment: 30 pages, PDFLaTeX; v2: typos corrected, explicit expressions for the free energy adde

    Organic Single-Crystal Field-Effect Transistors

    Full text link
    We present an overview of recent studies of the charge transport in the field effect transistors on the surface of single crystals of organic low-molecular-weight materials. We first discuss in detail the technological progress that has made these investigations possible. Particular attention is devoted to the growth and characterization of single crystals of organic materials and to different techniques that have been developed for device fabrication. We then concentrate on the measurements of the electrical characteristics. In most cases, these characteristics are highly reproducible and demonstrate the quality of the single crystal transistors. Particularly noticeable are the small sub-threshold slope, the non-monotonic temperature dependence of the mobility, and its weak dependence on the gate voltage. In the best rubrene transistors, room-temperature values of μ\mu as high as 15 cm2^2/Vs have been observed. This represents an order-of-magnitude increase with respect to the highest mobility previously reported for organic thin film transistors. In addition, the highest-quality single-crystal devices exhibit a significant anisotropy of the conduction properties with respect to the crystallographic direction. These observations indicate that the field effect transistors fabricated on single crystals are suitable for the study of the \textit{intrinsic} electronic properties of organic molecular semiconductors. We conclude by indicating some directions in which near-future work should focus to progress further in this rapidly evolving area of research.Comment: Review article, to appear in special issue of Phys. Stat. Sol. on organic semiconductor

    Gauged W Algebras

    Full text link
    We perform an Hamiltonian reduction on a classical \cw(\cg, \ch) algebra, and prove that we get another \cw(\cg, \ch') algebra, with chch\ch\subset\ch'. In the case \cg=S\ell(n), the existence of a suitable gauge, called Generalized Horizontal Gauge, allows to relate in this way two \cw-algebras as soon as their corresponding \ch-algebras are related by inclusion.Comment: 11 p., Latex. There was a misprint on the last autho

    Stellar Associations and their Field East of LMC 4 in the Large Magellanic Cloud

    Get PDF
    We report about the stellar content and the luminosity and mass functions of three stellar associations and their field located on the north-east edge of the super-bubble LMC 4 in the Large Magellanic Cloud.Comment: To be appeared in the meeting Proceedings of ``Modes of Star Formation and the Origin of Field Populations'', Heidelberg, Germany, October 2000; to be published in the ASP Conference Series, edited by E. K. Grebel and W. Brandne

    Further search for a neutral boson with a mass around 9 MeV/c2

    Get PDF
    Two dedicated experiments on internal pair conversion (IPC) of isoscalar M1 transitions were carried out in order to test a 9 MeV/c2 X-boson scenario. In the 7Li(p,e+e-)8Be reaction at 1.1 MeV proton energy to the predominantly T=0 level at 18.15 MeV, a significant deviation from IPC was observed at large pair correlation angles. In the 11B(d,n e+e-)12C reaction at 1.6 MeV, leading to the 12.71 MeV 1+ level with pure T=0 character, an anomaly was observed at 9 MeV/c2. The compatibility of the results with the scenario is discussed.Comment: 12 pages, 5 figures, 2 table
    corecore