1,703 research outputs found
Extended Drude model and role of interband transitions in the mid-infrared spectra of pnictides
We analyze the outcomes of an extended-Drude-model approach to the optical
spectra of pnictides, where the multiband nature of the electronic excitations
requires a careful analysis of the role of interband processes in the optical
conductivity.Through a direct comparison between model calculations of the
intraband optical spectra and experimental data, we show that interband
transitions,whose relevance is shown by first-principle calculations,give a non
negligible contribution already in the infrared region. This leads to a
substantial failure of the extended-Drude-model analysis on the measured
optical data without subtraction of interband contributions.Comment: 6 pages, 4 figure
Small Fermi energy, zero point fluctuations and nonadiabaticity in MgB
Small Fermi energy effects are induced in MgB by the low hole doping in
the bands which are characterized by a Fermi energy eV. We show that, due to the particularly strong deformation
potential relative to the phonon mode, lattice fluctuations are
reflected in strong fluctuations in the electronic band structure. Quantum
fluctuations associated to the zero-point lattice motion are responsible for an
uncertainty of the Fermi energy of the order of the Fermi energy itself,
leading to the breakdown of the adiabatic principle underlying the
Born-Oppenheimer approximation in MgB even if , where are the characteristic phonon
frequencies. This amounts to a new nonadiabatic regime, which could be relevant
to other unconventional superconductors.Comment: to appear on Physical Review
Linear response separation of a solid into atomic constituents: Li, Al, and their evolution under pressure
We present the first realization of the generalized pseudoatom concept
introduced by Ball, and adopt the name enatom to minimize confusion. This
enatom, which consists of a unique decomposition of the total charge density
(or potential) of any solid into a sum of overlapping atomiclike contributions
that move rigidly with the nuclei to first order, is calculated using
(numerical) linear response methods, and is analyzed for both fcc Li and Al at
pressures of 0, 35, and 50 GPa. These two simple fcc metals (Li is fcc and a
good superconductor in the 20-40 GPa range) show different physical behaviors
under pressure, which reflects the increasing covalency in Li and the lack of
it in Al. The nonrigid (deformation) parts of the enatom charge and potential
have opposite signs in Li and Al; they become larger under pressure only in Li.
These results establish a method of construction of the enatom, whose potential
can be used to obtain a real-space understanding of the vibrational properties
and electron-phonon interaction in solids.Comment: 13 pages, 9 figures, 1 table, V2: fixed problem with Fig. 7, V3:
minor correction
Study of temperature dependent atomic correlations in MgB
We have studied the evolution with temperature of the local as well as the
average crystal structure of MgB using the real-space atomic pair
distribution function (PDF) measured by high resolution neutron powder
diffraction. We have investigated the correlations of the B-B and B-Mg nearest
neighbor pair motion by comparing, in the wide temperature range from T=10 K up
to T=600 K, the mean-square displacements (MSD) of single atoms with the
mean-square relative displacements (MSRD) obtained from the PDF peak
linewidths. The results show that the single atom B and Mg vibrations are
mostly decoupled from each other, with a small predominance of positive (in
phase) correlation factor for both the B-B and B-Mg pairs. The small positive
correlation is almost temperature independent, in contrast with our theoretical
calculations; this can be a direct consequence of the strong decay processes of
the anharmonic phonons
Phonon softening and dispersion in the 1D Holstein model of spinless fermions
We investigate the effect of electron-phonon interaction on the phononic
properties in the one-dimensional half-filled Holstein model of spinless
fermions. By means of determinantal Quantum Monte Carlo simulation we show that
the behavior of the phonon dynamics gives a clear signal of the transition to a
charge-ordered phase, and the phase diagram obtained in this way is in
excellent agreement with previous DMRG results. By analyzing the phonon
propagator we extract the renormalized phonon frequency, and study how it first
softens as the transition is approached and then subsequently hardens in the
charge-ordered phase. We then show how anharmonic features develop in the
phonon propagator, and how the interaction induces a sizable dispersion of the
dressed phonon in the non-adiabatic regime.Comment: 7 pages, 6 figure
Single 20meV boson mode in KFe2As2 detected by point-contact spectroscopy
We report an experimental and theoretical investigation of the electron-boson
interaction in KFe2As2 by point-contact (PC) spectroscopy, model, and ab-initio
LDA-based calculations for the standard electron-phonon Eliashberg function.
The PC spectrum viz. the second derivative of the I - V characteristic of
representative PC exhibits a pronounced maximum at about 20meV and surprisingly
a featureless behavior at lower and higher energies. We discuss phonon and
non-phonon (excitonic) mechanisms for the origin of this peak. Analysis of the
underlying source of this peak may be important for the understanding of
serious puzzles of superconductivity in this type of compounds.Comment: 10 pages, 6 figs., to be published in PR
Phonon Mode Spectroscopy, Electron-Phonon Coupling and the Metal-Insulator Transition in Quasi-One-Dimensional M2Mo6Se6
We present electronic structure calculations, electrical resistivity data and
the first specific heat measurements in the normal and superconducting states
of quasi-one-dimensional M2Mo6Se6 (M = Tl, In, Rb). Rb2Mo6Se6 undergoes a
metal-insulator transition at ~170K: electronic structure calculations indicate
that this is likely to be driven by the formation of a dynamical charge density
wave. However, Tl2Mo6Se6 and In2Mo6Se6 remain metallic down to low temperature,
with superconducting transitions at Tc = 4.2K and 2.85K respectively. The
absence of any metal-insulator transition in these materials is due to a larger
in-plane bandwidth, leading to increased inter-chain hopping which suppresses
the density wave instability. Electronic heat capacity data for the
superconducting compounds reveal an exceptionally low density of states DEF =
0.055 states eV^-1 atom^-1, with BCS fits showing 2Delta/kBTc >= 5 for
Tl2Mo6Se6 and 3.5 for In2Mo6Se6. Modelling the lattice specific heat with a set
of Einstein modes, we obtain the approximate phonon density of states F(w).
Deconvolving the resistivity for the two superconductors then yields their
electron-phonon transport coupling function a^2F(w). In Tl2Mo6Se6 and
In2Mo6Se6, F(w) is dominated by an optical "guest ion" mode at ~5meV and a set
of acoustic modes from ~10-30meV. Rb2Mo6Se6 exhibits a similar spectrum;
however, the optical phonon has a lower intensity and is shifted to ~8meV.
Electrons in Tl2Mo6Se6 couple strongly to both sets of modes, whereas In2Mo6Se6
only displays significant coupling in the 10-18meV range. Although pairing is
clearly not mediated by the guest ion phonon, we believe it has a beneficial
effect on superconductivity in Tl2Mo6Se6, given its extraordinarily large
coupling strength and higher Tc compared to In2Mo6Se6.Comment: 16 pages, 13 figure
High resolution Compton scattering as a Probe of the Fermi surface in the Iron-based superconductor
We have carried out first principles all-electron calculations of the
(001)-projected 2D electron momentum density and the directional Compton
profiles along the [100], [001] and [110] directions in the Fe-based
superconductor LaOFeAs within the framework of the local density approximation.
We identify Fermi surface features in the 2D electron momentum density and the
directional Compton profiles, and discuss issues related to the observation of
these features via Compton scattering experiments.Comment: 4 pages, 3 figure
Small Fermi energy and phonon anharmonicity in MgB_2 and related compounds
The remarkable anharmonicity of the E_{2g} phonon in MgB_2 has been suggested
in literature to play a primary role in its superconducting pairing. We
investigate, by means of LDA calculations, the microscopic origin of such an
anharmonicity in MgB_2, AlB_2, and in hole-doped graphite. We find that the
anharmonic character of the E_{2g} phonon is essentially driven by the small
Fermi energy of the sigma holes. We present a simple analytic model which
allows us to understand in microscopic terms the role of the small Fermi energy
and of the electronic structure. The relation between anharmonicity and
nonadiabaticity is pointed out and discussed in relation to various materials.Comment: 5 pages, 2 figures replaced with final version, accepted on Physical
Review
Pairing symmetry of superconducting graphene
The possibility of intrinsic superconductivity in alkali-coated graphene
monolayers has been recently suggested theoretically. Here, we derive the
possible pairing symmetries of a carbon honeycomb lattice and discuss their
phase diagram. We also evaluate the superconducting local density of states
(LDOS) around an isolated impurity. This is directly related to scanning
tunneling microscopy experiments, and may evidence the occurrence of
unconventional superconductivity in graphene.Comment: Eur. Phys. J. B, to appea
- …
