78 research outputs found

    Comment on: "Estimating the Hartree-Fock limit from finite basis set calculations" [Jensen F (2005) Theor Chem Acc 113:267]

    Full text link
    We demonstrate that a minor modification of the extrapolation proposed by Jensen [(2005): Theor Chem Acc 113:267] yields very reliable estimates of the Hartree-Fock limit in conjunction with correlation consistent basis sets. Specifically, a two-point extrapolation of the form EHF,L=EHF,+A(L+1)exp(9L)E_{HF,L}=E_{HF,\infty}+A(L+1)\exp(-9\sqrt{L}) yields HF limits EHF,E_{HF,\infty} with an RMS error of 0.1 millihartree using aug-cc-pVQZ and aug-cc-pV5Z basis sets, and of 0.01 millihartree using aug-cc-pV5Z and aug-cc-pV6Z basis sets.Comment: Theoretical Chemistry Accounts, in pres

    The seventh blind test of crystal structure prediction: structure ranking methods

    Get PDF
    \ua9 2024 International Union of Crystallography. All rights reserved. A seventh blind test of crystal structure prediction has been organized by the Cambridge Crystallographic Data Centre. The results are presented in two parts, with this second part focusing on methods for ranking crystal structures in order of stability. The exercise involved standardized sets of structures seeded from a range of structure generation methods. Participants from 22 groups applied several periodic DFT-D methods, machine learned potentials, force fields derived from empirical data or quantum chemical calculations, and various combinations of the above. In addition, one non-energy-based scoring function was used. Results showed that periodic DFT-D methods overall agreed with experimental data within expected error margins, while one machine learned model, applying system-specific AIMnet potentials, agreed with experiment in many cases demonstrating promise as an efficient alternative to DFT-based methods. For target XXXII, a consensus was reached across periodic DFT methods, with consistently high predicted energies of experimental forms relative to the global minimum (above 4 kJ mol- 1 at both low and ambient temperatures) suggesting a more stable polymorph is likely not yet observed. The calculation of free energies at ambient temperatures offered improvement of predictions only in some cases (for targets XXVII and XXXI). Several avenues for future research have been suggested, highlighting the need for greater efficiency considering the vast amounts of resources utilized in many cases

    The seventh blind test of crystal structure prediction: structure generation methods

    Get PDF
    \ua9 2024 International Union of Crystallography. All rights reserved. A seventh blind test of crystal structure prediction was organized by the Cambridge Crystallographic Data Centre featuring seven target systems of varying complexity: a silicon and iodine-containing molecule, a copper coordination complex, a near-rigid molecule, a cocrystal, a polymorphic small agrochemical, a highly flexible polymorphic drug candidate, and a polymorphic morpholine salt. In this first of two parts focusing on structure generation methods, many crystal structure prediction (CSP) methods performed well for the small but flexible agrochemical compound, successfully reproducing the experimentally observed crystal structures, while few groups were successful for the systems of higher complexity. A powder X-ray diffraction (PXRD) assisted exercise demonstrated the use of CSP in successfully determining a crystal structure from a low-quality PXRD pattern. The use of CSP in the prediction of likely cocrystal stoichiometry was also explored, demonstrating multiple possible approaches. Crystallographic disorder emerged as an important theme throughout the test as both a challenge for analysis and a major achievement where two groups blindly predicted the existence of disorder for the first time. Additionally, large-scale comparisons of the sets of predicted crystal structures also showed that some methods yield sets that largely contain the same crystal structures

    Theoretical investigation of Banert cascade reaction

    No full text
    Computational inside of Banert cascade reaction for triazole formation is studied with B3LYP/6-31G(d,p) level of theory. The reaction proceeds mainly by SN2 initial chloride displacement rather than SN2′ -type attack. Furthermore, according to the rate of reaction calculation, SN2 displacement is much faster than SN2′ displacement in the order of 8. The [3,3]-sigmatropic rearrangement for the conversion of propargyl azide into triazafulvene has been proved as the rate-determining step having highest activation energy parameter. Solvent effect on total course of reaction has been found negligible. Furthermore, effects of different density functional theory functionals and functional groups on activation energies of [3,3]-sigmatropic rearrangement of propargyl azide were also studied. BHHLYP, ωB97XD, M062X and BMK calculated ∆G‡ are consistent with B3LYP.</p
    corecore