6,321 research outputs found
Topological interactions between ring polymers: Implications for chromatin loops
Chromatin looping is a major epigenetic regulatory mechanism in higher
eukaryotes. Besides its role in transcriptional regulation, chromatin loops
have been proposed to play a pivotal role in the segregation of entire
chromosomes. The detailed topological and entropic forces between loops still
remain elusive. Here, we quantitatively determine the potential of mean force
between the centers of mass of two ring polymers, i.e. loops. We find that the
transition from a linear to a ring polymer induces a strong increase in the
entropic repulsion between these two polymers. On top, topological interactions
such as the non-catenation constraint further reduce the number of accessible
conformations of close-by ring polymers by about 50%, resulting in an
additional effective repulsion. Furthermore, the transition from linear to ring
polymers displays changes in the conformational and structural properties of
the system. In fact, ring polymers adopt a markedly more ordered and aligned
state than linear ones. The forces and accompanying changes in shape and
alignment between ring polymers suggest an important regulatory function of
such a topology in biopolymers. We conjecture that dynamic loop formation in
chromatin might act as a versatile control mechanism regulating and maintaining
different local states of compaction and order.Comment: 12 pages, 11 figures. The article has been accepted by The Journal Of
Chemical Physics. After it is published, it will be found at
http://jcp.aip.or
Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications
Phase mixing of chaotic orbits exponentially distributes these orbits through
their accessible phase space. This phenomenon, commonly called ``chaotic
mixing'', stands in marked contrast to phase mixing of regular orbits which
proceeds as a power law in time. It is operationally irreversible; hence, its
associated e-folding time scale sets a condition on any process envisioned for
emittance compensation. A key question is whether beams can support chaotic
orbits, and if so, under what conditions? We numerically investigate the
parameter space of three-dimensional thermal-equilibrium beams with space
charge, confined by linear external focusing forces, to determine whether the
associated potentials support chaotic orbits. We find that a large subset of
the parameter space does support chaos and, in turn, chaotic mixing. Details
and implications are enumerated.Comment: 39 pages, including 14 figure
Investigation of the aerodynamic characteristics and wing-deployment transients of the NASA DL-4 body with a sailwing landing aid Final report
Aerodynamic characteristics and wing deployment transients of NASA DL-4 lifting body fitted with sailwing landing ai
Mol. Cell. Proteomics
Chemical cross-linking in combination with mass spectrometric analysis offers the potential to obtain low-resolution structural information from proteins and protein complexes. Identification of peptides connected by a cross-link provides direct evidence for the physical interaction of amino acid side chains, information that can be used for computational modeling purposes. Despite impressive advances that were made in recent years, the number of experimentally observed cross-links still falls below the number of possible contacts of cross-linkable side chains within the span of the cross-linker. Here, we propose two complementary experimental strategies to expand cross-linking data sets. First, enrichment of cross-linked peptides by size exclusion chromatography selects cross-linked peptides based on their higher molecular mass, thereby depleting the majority of unmodified peptides present in proteolytic digests of cross-linked samples. Second, we demonstrate that the use of proteases in addition to trypsin, such as Asp-N, can additionally boost the number of observable cross-linking sites. The benefits of both SEC enrichment and multiprotease digests are demonstrated on a set of model proteins and the improved workflow is applied to the characterization of the 20S proteasome from rabbit and Schizosaccharomyces pombe
Recommended from our members
Could Stannern-trend eucrites be crustal-contaminated melts?
In this paper, we show that the composition of Stannern trend eucrites can be satisfactorily explained by contamination of normal main group eucrites by a crustal partial melt
Pair Wave Functions in Atomic Fermi Condensates
Recent experiments have observed condensation behavior in a strongly
interacting system of fermionic atoms. We interpret these observations in terms
of a mean-field version of resonance superfluidity theory. We find that the
objects condensed are not bosonic molecules composed of bound fermion pairs,
but are rather spatially correlated Cooper pairs whose coherence length is
comparable to the mean spacing between atoms. We propose experiments that will
help to further probe these novel pairs
What does a binary black hole merger look like?
We present a method of calculating the strong-field gravitational lensing
caused by many analytic and numerical spacetimes. We use this procedure to
calculate the distortion caused by isolated black holes and by numerically
evolved black hole binaries. We produce both demonstrative images illustrating
details of the spatial distortion and realistic images of collections of stars
taking both lensing amplification and redshift into account. On large scales
the lensing from inspiraling binaries resembles that of single black holes, but
on small scales the resulting images show complex and in some cases
self-similar structure across different angular scales.Comment: 10 pages, 12 figures. Supplementary images and movies can be found at
http://www.black-holes.org/the-science-numerical-relativity/numerical-relativity/gravitational-lensin
Parameter Optimisation of a Virtual Synchronous Machine in a Microgrid
Parameters of a virtual synchronous machine in a small microgrid are
optimised. The dynamical behaviour of the system is simulated after a
perturbation, where the system needs to return to its steady state. The cost
functional evaluates the system behaviour for different parameters. This
functional is minimised by Parallel Tempering. Two perturbation scenarios are
investigated and the resulting optimal parameters agree with analytical
predictions. Dependent on the focus of the optimisation different optima are
obtained for each perturbation scenario. During the transient the system leaves
the allowed voltage and frequency bands only for a short time if the
perturbation is within a certain range.Comment: 17 pages, 5 figure
- …
