1,105 research outputs found
Autler-Townes splitting in two-color photoassociation of 6Li
We report on high-resolution two-color photoassociation spectroscopy in the
triplet system of magneto-optically trapped 6Li. The absolute transition
frequencies have been measured. Strong optical coupling of the bound molecular
states has been observed as Autler-Townes splitting in the photoassociation
signal. The spontaneous bound-bound transition rate is determined and the
molecule formation rate is estimated. The observed lineshapes are in good
agreement with the theoretical model.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. A (Rapid
Communication
Long range scattering resonances in strong-field seeking states of polar molecules
We present first steps toward understanding the ultracold scattering
properties of polar molecules in strong electric field-seeking states. We have
found that the elastic cross section displays a quasi-regular set of potential
resonances as a function of the electric field, which potentially offers
intimate details about the inter-molecular interaction. We illustrate these
resonances in a ``toy'' model composed of pure dipoles, and in more physically
realistic systems. To analyze these resonances, we use a simple WKB
approximation to the eigenphase, which proves both reasonably accurate and
meaningful. A general treatment of the Stark effect and dipolar interactions is
also presented
Young Suns Exoplanet Survey: Detection of a wide-orbit planetary-mass companion to a solar-type Sco-Cen member
The Young Suns Exoplanet Survey consists of a homogeneous sample of 70 young, solar-mass stars located in the Lower Centaurus-Crux subgroup of the Scorpius-Centaurus association with an average age of 15 ± 3 Myr. We report the detection of a co-moving companion around the K3IV star TYC 8998-760-1 (2MASSJ13251211–6456207) that is located at a distance of 94.6 ± 0.3 pc using SPHERE/IRDIS on the VLT. Spectroscopic observations with VLT/X-SHOOTER constrain the mass of the star to 1.00±0.02M⊙ and an age of 16.7±1.4 Myr. The companion TYC 8998-760-1 b is detected at a projected separation of 1.71″, which implies a projected physical separation of 162 au. Photometric measurements ranging from Y to M band provide a mass estimate of 14±3 M_(jup) by comparison to BT-Settl and AMES-dusty isochrones, corresponding to a mass ratio of q = 0.013 ± 0.003 with respect to the primary. We rule out additional companions to TYC 8998-760-1 that are more massive than 12 M_(jup) and farther than 12 au away from the host. Future polarimetric and spectroscopic observations of this system with ground and space based observatories will facilitate testing of formation and evolution scenarios shaping the architecture of the circumstellar environment around this ‘young Sun’
A New Version of Reimers' law of Mass Loss Based on a Physical Approach
We present a new semi-empirical relation for the mass loss of cool stellar
winds, which so far has frequently been described by "Reimers' law".
Originally, this relation was based solely on dimensional scaling arguments
without any physical interpretation. In our approach, the wind is assumed to
result from the spill-over of the extended chromosphere, possibly associated
with the action of waves, especially Alfven waves, which are used as guidance
in the derivation of the new formula. We obtain a relation akin to the original
Reimers law, but which includes two new factors. They reflect how the
chromospheric height depends on gravity and how the mechanical energy flux
depends, mainly, on effective temperature. The new relation is tested and
sensitively calibrated by modelling the blue end of the Horizontal Branch of
globular clusters. The most significant difference from mass loss rates
predicted by the Reimers relation is an increase by up to a factor of 3 for
luminous late-type (super-)giants, in good agreement with observations.Comment: 12 pages, 4 figures, accepted by ApJ Letter
Flaring Up All Over -- Radio Activity in Rapidly-Rotating Late-Type M and L Dwarfs
We present Very Large Array observations of twelve late M and L dwarfs in the
Solar neighborhood. The observed sources were chosen to cover a wide range of
physical characteristics - spectral type, rotation, age, binarity, and X-ray
and H\alpha activity - to determine the role of these properties in the
production of radio emission, and hence magnetic fields. Three of the twelve
sources, TVLM513-46546, 2MASS J0036159+182110, and BRI0021-0214, were observed
to flare and also exhibit persistent emission, indicating that magnetic
activity is not quenched at the bottom of the main sequence. The radio emission
extends to spectral type L3.5, and there is no apparent decrease in the ratio
of flaring luminosities to bolometric luminosities between M8-L3.5. Moreover,
contrary to the significant drop in persistent H\alpha activity beyond spectral
type M7, the persistent radio activity appears to steadily increase between
M3-L3.5. Similarly, the radio emission from BRI0021-0214 violates the
phenomenological relations between the radio and X-ray luminosities of
coronally active stars, hinting that radio and X-ray activity are also
uncorrelated at the bottom of the main sequence. The radio active sources that
have measured rotational velocities are rapid rotators, Vsin(i)>30 km/sec,
while the upper limits on radio activity in slowly-rotating late M dwarfs
(Vsin(i)<10 km/sec) are lower than these detections. These observations provide
tantalizing evidence that rapidly-rotating late M and L dwarfs are more likely
to be radio active. This possible correlation is puzzling given that the
observed radio emission requires sustained magnetic fields of 10-1000 G and
densities of 10^12 cm^-3, indicating that the active sources should have slowed
down considerably due to magnetic braking.Comment: Accepted to ApJ; Two new figures; Minor text revision
Saturation in heteronuclear photoassociation of 6Li7Li
We report heteronuclear photoassociation spectroscopy in a mixture of
magneto-optically trapped 6Li and 7Li. Hyperfine resolved spectra of the
vibrational level v=83 of the singlet state have been taken up to intensities
of 1000 W/cm^2. Saturation of the photoassociation rate has been observed for
two hyperfine transitions, which can be shown to be due to saturation of the
rate coefficient near the unitarity limit. Saturation intensities on the order
of 40 W/cm^2 can be determined.Comment: 5 pages, 3 figures, to appear in Phys. Rev. A (Rapid Communication
Geometry and symmetries of multi-particle systems
The quantum dynamical evolution of atomic and molecular aggregates, from
their compact to their fragmented states, is parametrized by a single
collective radial parameter. Treating all the remaining particle coordinates in
d dimensions democratically, as a set of angles orthogonal to this collective
radius or by equivalent variables, bypasses all independent-particle
approximations. The invariance of the total kinetic energy under arbitrary
d-dimensional transformations which preserve the radial parameter gives rise to
novel quantum numbers and ladder operators interconnecting its eigenstates at
each value of the radial parameter.
We develop the systematics and technology of this approach, introducing the
relevant mathematics tutorially, by analogy to the familiar theory of angular
momentum in three dimensions. The angular basis functions so obtained are
treated in a manifestly coordinate-free manner, thus serving as a flexible
generalized basis for carrying out detailed studies of wavefunction evolution
in multi-particle systems.Comment: 37 pages, 2 eps figure
Feshbach-Stimulated Photoproduction of a Stable Molecular Condensate
Photoassociation and the Feshbach resonance are, in principle, feasible means
for creating a molecular Bose-Einstein condensate from an
already-quantum-degenerate gas of atoms; however, mean-field shifts and
irreversible decay place practical constraints on the efficient delivery of
stable molecules using either mechanism alone. We therefore propose
Feshbach-stimulated Raman photoproduction, i.e., a combination of magnetic and
optical methods, as a viable means to collectively convert degenerate atoms
into a stable molecular condensate with near-unit efficiency.Comment: 5 pages, 3 figures, 1 table; v3 includes few-level diagram of scheme,
and added discussion; transferred to PR
Quantum stereodynamics of Li + HF reactive collisions: The role of reactants polarization on the differential cross section
A complete quantum study for the state-to-state Li + HF(v,j,m) → LiF(v′,j′,Ω′) + H reactive collisions has been performed using a wave packet method, for different initial rotational states and helicity states of the reactants. The state-to-state differential cross section has been simulated, and the polarization of products extracted. It is found that the reactivity is enhanced for nearly collinear collisions, which produces a vibrational excitation of HF, needed to overcome the late barrier. It is also found that LiF(v′ = 0) products are preferentially forward scattered, while vibrationally excited LiF(v′ = 1 and 2) are backward scattered. These results are interpreted with a simple reaction mechanism, based on the late character and bent geometry of the transition state, originating from a covalent/ionic crossing, which consists of two steps: the arrival at the transition state and the dissociation. In the first step, in order to get to the saddle point some HF vibrational excitation is required, which favors head-on collisions and therefore low values of m. In the second step a fast dissociation of H atom takes place, which is explained by the ionic Li+F -H character of the bent transition state: the FH- is repulsive making that H depart rapidly leaving a highly rotating LiF molecule. For the higher energy analyzed, where resonances slightly contribute, the orientation and alignment of product rotational states, referred to as reactants frame (with the z-axis parallel to k), are approximately constant with the scattering angle. The alignment is close to -1, showing that j′ is perpendicular to k, while starting from initial states with well defined rotational orientation, as states with pure m values, the final rotational are also oriented. It is also found that when using products frame (with the z′-axis parallel to k′) the rotational alignment and orientation of products varies a lot with the scattering angle just because the z′ axis changes from being parallel to anti-parallel to k when varying from θ = 0 to π. © the Owner Societies 2011.This work has been supported by the Ministerio de Ciencia e Innovación, under grants CSD2009-00038 (programa CONSOLIDER-INGENIO 2010 entitled “Molecular Astrophysics: the Herschel and Alma era”), FIS2010-18132, CTQ2008-02578 and CTQ2007-62898, and by Comunidad Autónoma de Madrid (CAM) under Grant No. S-0505/MAT/0303.Peer Reviewe
Low energy atomic collision with dipole interactions
We apply quantum defect theory to study low energy ground state atomic
collisions including aligned dipole interactions such as those induced by an
electric field. Our results show that coupled even () relative orbital
angular momentum partial wave channels exhibit shape resonance structures while
odd () channels do not. We analyze and interpret these resonances within the
framework of multichannel quantum defect theory (MQDT).Comment: 27 pages, 17 figures, an inadvertent typo correcte
- …
