46 research outputs found

    Kainate Receptor-Mediated Modulation of Hippocampal Fast Spiking Interneurons in a Rat Model of Schizophrenia

    Get PDF
    Kainate receptor (KAR) subunits are believed to be involved in abnormal GABAergic neurotransmission in the hippocampus (HIPP) in schizophrenia (SZ) and bipolar disorder. Postmortem studies have shown changes in the expression of the GluR5/6 subunits of KARs in the stratum oriens (SO) of sectors CA2/3, where the basolateral amygdala (BLA) sends a robust projection. Previous work using a rat model of SZ demonstrated that BLA activation leads to electrophysiological changes in fast-spiking interneurons in SO of CA2/3. The present study explores KAR modulation of interneurons in CA2/3 in response to BLA activation. Intrinsic firing properties of these interneurons through KAR-mediated activity were measured with patch-clamp recordings from rats that received 15 days of picrotoxin infusion into the BLA. Chronic BLA activation induced changes in the firing properties of CA2/3 interneurons associated with modifications in the function of KARs. Specifically, the responsiveness of these interneurons to activation of KARs was diminished in picrotoxin-treated rats, while the after-hyperpolarization (AHP) amplitude was increased. In addition, we tested blockers of KAR subunits which have been shown to have altered gene expression in SO sector CA2/3 of SZ subjects. The GluR5 antagonist UBP296 further decreased AP frequency and increased AHP amplitude in picrotoxin-treated rats. Application of the GluR6/7 antagonist NS102 suggested that activation of GluR6/7 KARs may be required to maintain the high firing rates in SO interneurons in the presence of KA. Moreover, the GluR6/7 KAR-mediated signaling may be suppressed in PICRO-treated rats. Our findings indicate that glutamatergic activity from the BLA may modulate the firing properties of CA2/3 interneurons through GluR5 and GluR6/7 KARs. These receptors are expressed in GABAergic interneurons and play a key role in the synchronization of gamma oscillations. Modulation of interneuronal activity through KARs in response to amygdala activation may lead to abnormal oscillatory rhythms reported in SZ subjects

    Chromosomal organization at the level of gene complexes

    Get PDF
    Metazoan genomes primarily consist of non-coding DNA in comparison to coding regions. Non-coding fraction of the genome contains cis-regulatory elements, which ensure that the genetic code is read properly at the right time and space during development. Regulatory elements and their target genes define functional landscapes within the genome, and some developmentally important genes evolve by keeping the genes involved in specification of common organs/tissues in clusters and are termed gene complex. The clustering of genes involved in a common function may help in robust spatio-temporal gene expression. Gene complexes are often found to be evolutionarily conserved, and the classic example is the hox complex. The evolutionary constraints seen among gene complexes provide an ideal model system to understand cis and trans-regulation of gene function. This review will discuss the various characteristics of gene regulatory modules found within gene complexes and how they can be characterized

    Towards a conceptual framework for explaining variation in nocturnal departure time of songbird migrants

    Get PDF
    Most songbird migrants travel between their breeding areas and wintering grounds by a series of nocturnal flights. The exact nocturnal departure time for these flights varies considerably between individuals even of the same species. Although the basic circannual and circadian rhythms of songbirds, their adaptation to migration, and the factors influencing the birds' day-to-day departure decision are reasonably well studied, we do not understand how birds time their departures within the night. These decisions are crucial, because the nocturnal departure time defines the potential flight duration of the migratory night. The distances covered during the nocturnal migratory flights in the course of migration in turn directly affect the overall speed of migration. To understand the factors influencing the arrival of the birds in the breeding/wintering areas, we need to investigate the mechanisms that control nocturnal departure time. Here, we provide the first conceptual framework for explaining the variation commonly observed in this migratory trait. The basic schedule of nocturnal departure is likely regulated by both the circannual and circadian rhythms of the innate migration program. We postulate that the endogenously controlled schedule of nocturnal departures is modified by intrinsic and extrinsic factors. So far there is only correlative evidence that birds with a high fuel load or a considerable increase in fuel load and significant wind (flow) assistance towards their migratory goal depart early within the night. In contrast, birds migrating with little fuel and under unfavorable wind conditions show high variation in their nocturnal departure time. The latter may contain an unknown proportion of nocturnal movements not directly related to migratory flights. Excluding such movements is crucial to clearly identify the main drivers of the variation in nocturnal departure time. In general we assume that the observed variation in the nocturnal departure time is explained by individually different reactions norms of the innate migration program to both intrinsic and extrinsic factors
    corecore