1,972 research outputs found

    Finding Scientific Gems with Google

    Full text link
    We apply the Google PageRank algorithm to assess the relative importance of all publications in the Physical Review family of journals from 1893--2003. While the Google number and the number of citations for each publication are positively correlated, outliers from this linear relation identify some exceptional papers or "gems" that are universally familiar to physicists.Comment: 6 pages, 4 figures, 2 tables, 2-column revtex4 forma

    Characterizing the dynamical importance of network nodes and links

    Full text link
    The largest eigenvalue of the adjacency matrix of the networks is a key quantity determining several important dynamical processes on complex networks. Based on this fact, we present a quantitative, objective characterization of the dynamical importance of network nodes and links in terms of their effect on the largest eigenvalue. We show how our characterization of the dynamical importance of nodes can be affected by degree-degree correlations and network community structure. We discuss how our characterization can be used to optimize techniques for controlling certain network dynamical processes and apply our results to real networks.Comment: 4 pages, 4 figure

    Exposing Multi-Relational Networks to Single-Relational Network Analysis Algorithms

    Full text link
    Many, if not most network analysis algorithms have been designed specifically for single-relational networks; that is, networks in which all edges are of the same type. For example, edges may either represent "friendship," "kinship," or "collaboration," but not all of them together. In contrast, a multi-relational network is a network with a heterogeneous set of edge labels which can represent relationships of various types in a single data structure. While multi-relational networks are more expressive in terms of the variety of relationships they can capture, there is a need for a general framework for transferring the many single-relational network analysis algorithms to the multi-relational domain. It is not sufficient to execute a single-relational network analysis algorithm on a multi-relational network by simply ignoring edge labels. This article presents an algebra for mapping multi-relational networks to single-relational networks, thereby exposing them to single-relational network analysis algorithms.Comment: ISSN:1751-157

    Graph-based Features for Automatic Online Abuse Detection

    Full text link
    While online communities have become increasingly important over the years, the moderation of user-generated content is still performed mostly manually. Automating this task is an important step in reducing the financial cost associated with moderation, but the majority of automated approaches strictly based on message content are highly vulnerable to intentional obfuscation. In this paper, we discuss methods for extracting conversational networks based on raw multi-participant chat logs, and we study the contribution of graph features to a classification system that aims to determine if a given message is abusive. The conversational graph-based system yields unexpectedly high performance , with results comparable to those previously obtained with a content-based approach

    Immunization of networks with community structure

    Full text link
    In this study, an efficient method to immunize modular networks (i.e., networks with community structure) is proposed. The immunization of networks aims at fragmenting networks into small parts with a small number of removed nodes. Its applications include prevention of epidemic spreading, intentional attacks on networks, and conservation of ecosystems. Although preferential immunization of hubs is efficient, good immunization strategies for modular networks have not been established. On the basis of an immunization strategy based on the eigenvector centrality, we develop an analytical framework for immunizing modular networks. To this end, we quantify the contribution of each node to the connectivity in a coarse-grained network among modules. We verify the effectiveness of the proposed method by applying it to model and real networks with modular structure.Comment: 3 figures, 1 tabl

    Analysis of weighted networks

    Full text link
    The connections in many networks are not merely binary entities, either present or not, but have associated weights that record their strengths relative to one another. Recent studies of networks have, by and large, steered clear of such weighted networks, which are often perceived as being harder to analyze than their unweighted counterparts. Here we point out that weighted networks can in many cases be analyzed using a simple mapping from a weighted network to an unweighted multigraph, allowing us to apply standard techniques for unweighted graphs to weighted ones as well. We give a number of examples of the method, including an algorithm for detecting community structure in weighted networks and a new and simple proof of the max-flow/min-cut theorem.Comment: 9 pages, 3 figure

    Grammar-Based Random Walkers in Semantic Networks

    Full text link
    Semantic networks qualify the meaning of an edge relating any two vertices. Determining which vertices are most "central" in a semantic network is difficult because one relationship type may be deemed subjectively more important than another. For this reason, research into semantic network metrics has focused primarily on context-based rankings (i.e. user prescribed contexts). Moreover, many of the current semantic network metrics rank semantic associations (i.e. directed paths between two vertices) and not the vertices themselves. This article presents a framework for calculating semantically meaningful primary eigenvector-based metrics such as eigenvector centrality and PageRank in semantic networks using a modified version of the random walker model of Markov chain analysis. Random walkers, in the context of this article, are constrained by a grammar, where the grammar is a user defined data structure that determines the meaning of the final vertex ranking. The ideas in this article are presented within the context of the Resource Description Framework (RDF) of the Semantic Web initiative.Comment: First draft of manuscript originally written in November 200

    A customisable pipeline for continuously harvesting socially-minded Twitter users

    Full text link
    On social media platforms and Twitter in particular, specific classes of users such as influencers have been given satisfactory operational definitions in terms of network and content metrics. Others, for instance online activists, are not less important but their characterisation still requires experimenting. We make the hypothesis that such interesting users can be found within temporally and spatially localised contexts, i.e., small but topical fragments of the network containing interactions about social events or campaigns with a significant footprint on Twitter. To explore this hypothesis, we have designed a continuous user profile discovery pipeline that produces an ever-growing dataset of user profiles by harvesting and analysing contexts from the Twitter stream. The profiles dataset includes key network and content-based users metrics, enabling experimentation with user-defined score functions that characterise specific classes of online users. The paper describes the design and implementation of the pipeline and its empirical evaluation on a case study consisting of healthcare-related campaigns in the UK, showing how it supports the operational definitions of online activism, by comparing three experimental ranking functions. The code is publicly available.Comment: Procs. ICWE 2019, June 2019, Kore

    Social Balance on Networks: The Dynamics of Friendship and Enmity

    Get PDF
    How do social networks evolve when both friendly and unfriendly relations exist? Here we propose a simple dynamics for social networks in which the sense of a relationship can change so as to eliminate imbalanced triads--relationship triangles that contains 1 or 3 unfriendly links. In this dynamics, a friendly link changes to unfriendly or vice versa in an imbalanced triad to make the triad balanced. Such networks undergo a dynamic phase transition from a steady state to "utopia"--all friendly links--as the amount of network friendliness is changed. Basic features of the long-time dynamics and the phase transition are discussed.Comment: 16 pages, 11 figures, paper based on an invited talk at Dyonet06, Dynamics on Complex Networks and Applications, Dresden, Germany, Feburary 200
    corecore