13 research outputs found

    In vitro genotoxicity and cytotoxicity of a particular combination of pemetrexed and cefixime in human peripheral blood lymphocytes

    Get PDF
    This study aims to find the genotoxic and cytotoxic effects of a particular combination of pemetrexed (PMX) and cefixime (CFX) in human peripheral blood lymphocytes. Chromosome aberration (CA), sister chromatid exchange (SCE), and micronucleus (MN) tests were used to assess genotoxicity. Whereas, the cytotoxicity was evaluated by using mitotic index (MI), proliferation index (PI), and nuclear division index (NDI). Our tests were proceeded with concentrations of 12.5 + 450, 25 + 800, 37.5 + 1150, and 50 + 1500 μg/mL of a mixture of PMX and CFX separately for 24 hr and 48 hr. The combination of PMX + CFX did not induce the CA or SCE in human peripheral blood lymphocytes when compared with both the control and the solvent control. MN in human peripheral blood lymphocytes was not significantly increased after treatment with a particular combination of PMX + CFX. However, PMX + CFX significantly decreased the MI, PI and NDI at all concentrations for 24- and 48-hr treatment periods when compared with both controls. Generally, PMX + CFX inhibited cell proliferation more than positive control (MMC) and showed a higher cytotoxic effect than MMC at both treatment periods. These results were compared with individual effects of PMX and CFX. As a result, it was observed that a particular combination of PMX + CFX was not genotoxic. However, the combination synergistically increase cytotoxicity in human peripheral blood lymphocytes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40064-015-0803-3) contains supplementary material, which is available to authorized users

    Is exposure to formaldehyde in air causally associated with leukemia?—A hypothesis-based weight-of-evidence analysis

    Get PDF
    Recent scientific debate has focused on the potential for inhaled formaldehyde to cause lymphohematopoietic cancers, particularly leukemias, in humans. The concern stems from certain epidemiology studies reporting an association, although particulars of endpoints and dosimetry are inconsistent across studies and several other studies show no such effects. Animal studies generally report neither hematotoxicity nor leukemia associated with formaldehyde inhalation, and hematotoxicity studies in humans are inconsistent. Formaldehyde's reactivity has been thought to preclude systemic exposure following inhalation, and its apparent inability to reach and affect the target tissues attacked by known leukemogens has, heretofore, led to skepticism regarding its potential to cause human lymphohematopoietic cancers. Recently, however, potential modes of action for formaldehyde leukemogenesis have been hypothesized, and it has been suggested that formaldehyde be identified as a known human leukemogen. In this article, we apply our hypothesis-based weight-of-evidence (HBWoE) approach to evaluate the large body of evidence regarding formaldehyde and leukemogenesis, attending to how human, animal, and mode-of-action results inform one another. We trace the logic of inference within and across all studies, and articulate how one could account for the suite of available observations under the various proposed hypotheses. Upon comparison of alternative proposals regarding what causal processes may have led to the array of observations as we see them, we conclude that the case fora causal association is weak and strains biological plausibility. Instead, apparent association between formaldehyde inhalation and leukemia in some human studies is better interpreted as due to chance or confounding

    The Association of LINE-1 Hypomethylation with Age and Centromere Positive Micronuclei in Human Lymphocytes

    No full text
    Global hypomethylation in white blood cell (WBC) DNA has recently been proposed as a potential biomarker for determining cancer risk through genomic instability. However, the amplitude of the changes associated with age and the impacts of environmental factors on DNA methylation are unclear. In this study, we investigated the association of genomic hypomethylation with age, cigarette use, drinking status and the presence of centromere positive micronuclei (MNC+)-a biomarker for age-dependent genomic instability. Genomic hypomethylation of the repetitive element LINE-1 was measured in WBC DNA from 32 healthy male volunteers using the pyrosequencing assay. We also measured MNC+ with the micronucleus-centromere assay using a pan-centromeric probe. Possibly due to the small sample size and resulting low statistical power, smoking and drinking status had no significant effect on LINE-1 hypomethylation or the occurrence of MNC+. Consequently, we did not include them in further analyses. In contrast, LINE-1 hypomethylation and age significantly predicted MNC+; therefore, we examined whether LINE-1 hypomethylation plays a role in MNC+ formation by age, since genomic hypomethylation is associated with genomic instability. However, LINE-1 hypomethylation did not significantly mediate the effect of age on MNC+. Our data indicate that the repetitive element LINE-1 is demethylated with age and increasing MNC+ frequency, but additional studies are needed to fully understand the relation between genomic DNA hypomethylation, age and genomic instability

    Cytogenetic biomonitoring of inhabitants of a large uranium mineralization area: the municipalities of Monte Alegre, Prainha, and Alenquer, in the State of Pará, Brazil

    No full text

    Radiation Risk Assessment in Professionals Working in Dental Radiology Area using Buccal Micronucleus Cytome Assay

    No full text
    corecore