859 research outputs found
Fourier's Law in a Quantum Spin Chain and the Onset of Quantum Chaos
We study heat transport in a nonequilibrium steady state of a quantum
interacting spin chain. We provide clear numerical evidence of the validity of
Fourier law. The regime of normal conductivity is shown to set in at the
transition to quantum chaos.Comment: 4 pages, 5 figures, RevTe
Reconstructing Fourier's law from disorder in quantum wires
The theory of open quantum systems is used to study the local temperature and
heat currents in metallic nanowires connected to leads at different
temperatures. We show that for ballistic wires the local temperature is almost
uniform along the wire and Fourier's law is invalid. By gradually increasing
disorder, a uniform temperature gradient ensues inside the wire and the thermal
current linearly relates to this local temperature gradient, in agreement with
Fourier's law. Finally, we demonstrate that while disorder is responsible for
the onset of Fourier's law, the non-equilibrium energy distribution function is
determined solely by the heat baths
Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations
We study heat conduction in (n, 0)/(2n, 0) intramolecular junctions by using
molecular dynamics method. It is found that the heat conduction is asymmetric,
namely, heat transports preferably in one direction. This phenomenon is also
called thermal rectification. The rectification is weakly dependent on the
detailed structure of connection part, but is strongly dependent on the
temperature gradient. We also study the effect of the tube radius and
intramolecular junction length on the rectification. Our study shows that the
tensile stress can increase rectification. The physical mechanism of the
rectification is explained
Third Order Renormalization Group applied to the attractive one-dimensional Fermi Gas
We consider a Callan-Symanzik and a Wilson Renormalization Group approach to
the infrared problem for interacting fermions in one dimension with
backscattering. We compute the third order (two-loop) approximation of the beta
function using both methods and compare it with the well known multiplicative
Gell-Mann Low approach. We point out a previously unnoticed qualitative
dependence of the third order fixed point on an arbitrary dimensionless
parameter, which strongly suggest the spurious nature of the fixed point.Comment: 16 pages, Revised version, added comment
Normal heat conduction in one dimensional momentum conserving lattices with asymmetric interactions
The heat conduction behavior of one dimensional momentum conserving lattice
systems with asymmetric interparticle interactions is numerically investigated.
It is found that with certain degree of interaction asymmetry, the heat
conductivity measured in nonequilibrium stationary states converges in the
thermodynamical limit, in clear contrast to the well accepted viewpoint that
Fourier's law is generally violated in low dimensional momentum conserving
systems. It suggests in nonequilibrium stationary states the mass gradient
resulted from the asymmetric interactions may provide an additional phonon
scattering mechanism other than that due to the nonlinear interactions.Comment: 4 pages, 4 figure
Thermal conductivity of the Toda lattice with conservative noise
We study the thermal conductivity of the one dimensional Toda lattice
perturbed by a stochastic dynamics preserving energy and momentum. The strength
of the stochastic noise is controlled by a parameter . We show that
heat transport is anomalous, and that the thermal conductivity diverges with
the length of the chain according to , with . In particular, the ballistic heat conduction of the
unperturbed Toda chain is destroyed. Besides, the exponent of the
divergence depends on
Heat conduction induced by non-Gaussian athermal fluctuations
We study the properties of heat conduction induced by non-Gaussian noises
from athermal environments. We find that new terms should be added to the
conventional Fourier law and the fluctuation theorem for the heat current,
where its average and fluctuation are determined not only by the noise
intensities but also by the non-Gaussian nature of the noises. Our results
explicitly show the absence of the zeroth law of thermodynamics in athermal
systems.Comment: 15 pages, 4 figures, PRE in pres
Nonequilibrium dynamics of a stochastic model of anomalous heat transport: numerical analysis
We study heat transport in a chain of harmonic oscillators with random
elastic collisions between nearest-neighbours. The equations of motion of the
covariance matrix are numerically solved for free and fixed boundary
conditions. In the thermodynamic limit, the shape of the temperature profile
and the value of the stationary heat flux depend on the choice of boundary
conditions. For free boundary conditions, they also depend on the coupling
strength with the heat baths. Moreover, we find a strong violation of local
equilibrium at the chain edges that determine two boundary layers of size
(where is the chain length), that are characterized by a
different scaling behaviour from the bulk. Finally, we investigate the
relaxation towards the stationary state, finding two long time scales: the
first corresponds to the relaxation of the hydrodynamic modes; the second is a
manifestation of the finiteness of the system.Comment: Submitted to Journal of Physics A, Mathematical and Theoretica
Drastic fall-off of the thermal conductivity for disordered lattices in the limit of weak anharmonic interactions
We study the thermal conductivity, at fixed positive temperature, of a
disordered lattice of harmonic oscillators, weakly coupled to each other
through anharmonic potentials. The interaction is controlled by a small
parameter . We rigorously show, in two slightly different setups,
that the conductivity has a non-perturbative origin. This means that it decays
to zero faster than any polynomial in as . It
is then argued that this result extends to a disordered chain studied by Dhar
and Lebowitz, and to a classical spins chain recently investigated by
Oganesyan, Pal and Huse.Comment: 21 page
- …
