492 research outputs found

    Catalan's intervals and realizers of triangulations

    Full text link
    The Stanley lattice, Tamari lattice and Kreweras lattice are three remarkable orders defined on the set of Catalan objects of a given size. These lattices are ordered by inclusion: the Stanley lattice is an extension of the Tamari lattice which is an extension of the Kreweras lattice. The Stanley order can be defined on the set of Dyck paths of size nn as the relation of \emph{being above}. Hence, intervals in the Stanley lattice are pairs of non-crossing Dyck paths. In a former article, the second author defined a bijection Φ\Phi between pairs of non-crossing Dyck paths and the realizers of triangulations (or Schnyder woods). We give a simpler description of the bijection Φ\Phi. Then, we study the restriction of Φ\Phi to Tamari's and Kreweras' intervals. We prove that Φ\Phi induces a bijection between Tamari intervals and minimal realizers. This gives a bijection between Tamari intervals and triangulations. We also prove that Φ\Phi induces a bijection between Kreweras intervals and the (unique) realizers of stack triangulations. Thus, Φ\Phi induces a bijection between Kreweras intervals and stack triangulations which are known to be in bijection with ternary trees.Comment: 22 page

    There are Plane Spanners of Maximum Degree 4

    Full text link
    Let E be the complete Euclidean graph on a set of points embedded in the plane. Given a constant t >= 1, a spanning subgraph G of E is said to be a t-spanner, or simply a spanner, if for any pair of vertices u,v in E the distance between u and v in G is at most t times their distance in E. A spanner is plane if its edges do not cross. This paper considers the question: "What is the smallest maximum degree that can always be achieved for a plane spanner of E?" Without the planarity constraint, it is known that the answer is 3 which is thus the best known lower bound on the degree of any plane spanner. With the planarity requirement, the best known upper bound on the maximum degree is 6, the last in a long sequence of results improving the upper bound. In this paper we show that the complete Euclidean graph always contains a plane spanner of maximum degree at most 4 and make a big step toward closing the question. Our construction leads to an efficient algorithm for obtaining the spanner from Chew's L1-Delaunay triangulation

    Asymptotic of geometrical navigation on a random set of points of the plane

    Full text link
    A navigation on a set of points SS is a rule for choosing which point to move to from the present point in order to progress toward a specified target. We study some navigations in the plane where SS is a non uniform Poisson point process (in a finite domain) with intensity going to ++\infty. We show the convergence of the traveller path lengths, the number of stages done, and the geometry of the traveller trajectories, uniformly for all starting points and targets, for several navigations of geometric nature. Other costs are also considered. This leads to asymptotic results on the stretch factors of random Yao-graphs and random θ\theta-graphs

    Labeling Schemes for Bounded Degree Graphs

    Full text link
    We investigate adjacency labeling schemes for graphs of bounded degree Δ=O(1)\Delta = O(1). In particular, we present an optimal (up to an additive constant) logn+O(1)\log n + O(1) adjacency labeling scheme for bounded degree trees. The latter scheme is derived from a labeling scheme for bounded degree outerplanar graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 10], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 02]. We also provide improved labeling schemes for bounded degree planar graphs. Finally, we use combinatorial number systems and present an improved adjacency labeling schemes for graphs of bounded degree Δ\Delta with (e+1)n<Δn/5(e+1)\sqrt{n} < \Delta \leq n/5

    A syntactic soundness proof for free-variable tableaux with on-the-fly Skolemization

    No full text
    We prove the syntactic soundness of classical tableaux with free variables and on-the-fly Skolemization. Soundness proofs are usually built from semantic arguments, and this is to our knowledge, the first proof that appeals to syntactic means. We actually prove the soundness property with respect to cut-free sequent calculus. This requires great care because of the additional liberty in freshness checking allowed by the use of Skolem terms. In contrast to semantic soundness, we gain the possibility to state a cut elimination theorem for sequent calculus, under the proviso that completeness of the method holds. We believe that such techniques can be applied to tableaux in other logics as well

    The Stretch Factor of L1L_1- and LL_\infty-Delaunay Triangulations

    Get PDF
    In this paper we determine the stretch factor of the L1L_1-Delaunay and LL_\infty-Delaunay triangulations, and we show that this stretch is 4+222.61\sqrt{4+2\sqrt{2}} \approx 2.61. Between any two points x,yx,y of such triangulations, we construct a path whose length is no more than 4+22\sqrt{4+2\sqrt{2}} times the Euclidean distance between xx and yy, and this bound is best possible. This definitively improves the 25-year old bound of 10\sqrt{10} by Chew (SoCG '86). To the best of our knowledge, this is the first time the stretch factor of the well-studied LpL_p-Delaunay triangulations, for any real p1p\ge 1, is determined exactly

    Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition

    Get PDF
    A geometric graph is angle-monotone if every pair of vertices has a path between them that---after some rotation---is xx- and yy-monotone. Angle-monotone graphs are 2\sqrt 2-spanners and they are increasing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in 2014 and proved that Gabriel triangulations are angle-monotone graphs. We give a polynomial time algorithm to recognize angle-monotone geometric graphs. We prove that every point set has a plane geometric graph that is generalized angle-monotone---specifically, we prove that the half-θ6\theta_6-graph is generalized angle-monotone. We give a local routing algorithm for Gabriel triangulations that finds a path from any vertex ss to any vertex tt whose length is within 1+21 + \sqrt 2 times the Euclidean distance from ss to tt. Finally, we prove some lower bounds and limits on local routing algorithms on Gabriel triangulations.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Spanning Properties of Theta-Theta Graphs

    Full text link
    We study the spanning properties of Theta-Theta graphs. Similar in spirit with the Yao-Yao graphs, Theta-Theta graphs partition the space around each vertex into a set of k cones, for some fixed integer k > 1, and select at most one edge per cone. The difference is in the way edges are selected. Yao-Yao graphs select an edge of minimum length, whereas Theta-Theta graphs select an edge of minimum orthogonal projection onto the cone bisector. It has been established that the Yao-Yao graphs with parameter k = 6k' have spanning ratio 11.67, for k' >= 6. In this paper we establish a first spanning ratio of 7.827.82 for Theta-Theta graphs, for the same values of kk. We also extend the class of Theta-Theta spanners with parameter 6k', and establish a spanning ratio of 16.7616.76 for k' >= 5. We surmise that these stronger results are mainly due to a tighter analysis in this paper, rather than Theta-Theta being superior to Yao-Yao as a spanner. We also show that the spanning ratio of Theta-Theta graphs decreases to 4.64 as k' increases to 8. These are the first results on the spanning properties of Theta-Theta graphs.Comment: 20 pages, 6 figures, 3 table

    Verifying Safety Properties With the TLA+ Proof System

    Get PDF
    TLAPS, the TLA+ proof system, is a platform for the development and mechanical verification of TLA+ proofs written in a declarative style requiring little background beyond elementary mathematics. The language supports hierarchical and non-linear proof construction and verification, and it is independent of any verification tool or strategy. A Proof Manager uses backend verifiers such as theorem provers, proof assistants, SMT solvers, and decision procedures to check TLA+ proofs. This paper documents the first public release of TLAPS, distributed with a BSD-like license. It handles almost all the non-temporal part of TLA+ as well as the temporal reasoning needed to prove standard safety properties, in particular invariance and step simulation, but not liveness properties
    corecore