492 research outputs found
Catalan's intervals and realizers of triangulations
The Stanley lattice, Tamari lattice and Kreweras lattice are three remarkable
orders defined on the set of Catalan objects of a given size. These lattices
are ordered by inclusion: the Stanley lattice is an extension of the Tamari
lattice which is an extension of the Kreweras lattice. The Stanley order can be
defined on the set of Dyck paths of size as the relation of \emph{being
above}. Hence, intervals in the Stanley lattice are pairs of non-crossing Dyck
paths. In a former article, the second author defined a bijection
between pairs of non-crossing Dyck paths and the realizers of triangulations
(or Schnyder woods). We give a simpler description of the bijection .
Then, we study the restriction of to Tamari's and Kreweras' intervals.
We prove that induces a bijection between Tamari intervals and minimal
realizers. This gives a bijection between Tamari intervals and triangulations.
We also prove that induces a bijection between Kreweras intervals and
the (unique) realizers of stack triangulations. Thus, induces a
bijection between Kreweras intervals and stack triangulations which are known
to be in bijection with ternary trees.Comment: 22 page
There are Plane Spanners of Maximum Degree 4
Let E be the complete Euclidean graph on a set of points embedded in the
plane. Given a constant t >= 1, a spanning subgraph G of E is said to be a
t-spanner, or simply a spanner, if for any pair of vertices u,v in E the
distance between u and v in G is at most t times their distance in E. A spanner
is plane if its edges do not cross.
This paper considers the question: "What is the smallest maximum degree that
can always be achieved for a plane spanner of E?" Without the planarity
constraint, it is known that the answer is 3 which is thus the best known lower
bound on the degree of any plane spanner. With the planarity requirement, the
best known upper bound on the maximum degree is 6, the last in a long sequence
of results improving the upper bound. In this paper we show that the complete
Euclidean graph always contains a plane spanner of maximum degree at most 4 and
make a big step toward closing the question. Our construction leads to an
efficient algorithm for obtaining the spanner from Chew's L1-Delaunay
triangulation
Asymptotic of geometrical navigation on a random set of points of the plane
A navigation on a set of points is a rule for choosing which point to
move to from the present point in order to progress toward a specified target.
We study some navigations in the plane where is a non uniform Poisson point
process (in a finite domain) with intensity going to . We show the
convergence of the traveller path lengths, the number of stages done, and the
geometry of the traveller trajectories, uniformly for all starting points and
targets, for several navigations of geometric nature. Other costs are also
considered. This leads to asymptotic results on the stretch factors of random
Yao-graphs and random -graphs
Labeling Schemes for Bounded Degree Graphs
We investigate adjacency labeling schemes for graphs of bounded degree
. In particular, we present an optimal (up to an additive
constant) adjacency labeling scheme for bounded degree trees.
The latter scheme is derived from a labeling scheme for bounded degree
outerplanar graphs. Our results complement a similar bound recently obtained
for bounded depth trees [Fraigniaud and Korman, SODA 10], and may provide new
insights for closing the long standing gap for adjacency in trees [Alstrup and
Rauhe, FOCS 02]. We also provide improved labeling schemes for bounded degree
planar graphs. Finally, we use combinatorial number systems and present an
improved adjacency labeling schemes for graphs of bounded degree with
A syntactic soundness proof for free-variable tableaux with on-the-fly Skolemization
We prove the syntactic soundness of classical tableaux with free variables and on-the-fly Skolemization. Soundness proofs are usually built from semantic arguments, and this is to our knowledge, the first proof that appeals to syntactic means. We actually prove the soundness property with respect to cut-free sequent calculus. This requires great care because of the additional liberty in freshness checking allowed by the use of Skolem terms. In contrast to semantic soundness, we gain the possibility to state a cut elimination theorem for sequent calculus, under the proviso that completeness of the method holds. We believe that such techniques can be applied to tableaux in other logics as well
The Stretch Factor of - and -Delaunay Triangulations
In this paper we determine the stretch factor of the -Delaunay and
-Delaunay triangulations, and we show that this stretch is
. Between any two points of such
triangulations, we construct a path whose length is no more than
times the Euclidean distance between and , and this
bound is best possible. This definitively improves the 25-year old bound of
by Chew (SoCG '86). To the best of our knowledge, this is the first
time the stretch factor of the well-studied -Delaunay triangulations, for
any real , is determined exactly
Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition
A geometric graph is angle-monotone if every pair of vertices has a path
between them that---after some rotation---is - and -monotone.
Angle-monotone graphs are -spanners and they are increasing-chord
graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in
2014 and proved that Gabriel triangulations are angle-monotone graphs. We give
a polynomial time algorithm to recognize angle-monotone geometric graphs. We
prove that every point set has a plane geometric graph that is generalized
angle-monotone---specifically, we prove that the half--graph is
generalized angle-monotone. We give a local routing algorithm for Gabriel
triangulations that finds a path from any vertex to any vertex whose
length is within times the Euclidean distance from to .
Finally, we prove some lower bounds and limits on local routing algorithms on
Gabriel triangulations.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Spanning Properties of Theta-Theta Graphs
We study the spanning properties of Theta-Theta graphs. Similar in spirit
with the Yao-Yao graphs, Theta-Theta graphs partition the space around each
vertex into a set of k cones, for some fixed integer k > 1, and select at most
one edge per cone. The difference is in the way edges are selected. Yao-Yao
graphs select an edge of minimum length, whereas Theta-Theta graphs select an
edge of minimum orthogonal projection onto the cone bisector. It has been
established that the Yao-Yao graphs with parameter k = 6k' have spanning ratio
11.67, for k' >= 6. In this paper we establish a first spanning ratio of
for Theta-Theta graphs, for the same values of . We also extend the class of
Theta-Theta spanners with parameter 6k', and establish a spanning ratio of
for k' >= 5. We surmise that these stronger results are mainly due to a
tighter analysis in this paper, rather than Theta-Theta being superior to
Yao-Yao as a spanner. We also show that the spanning ratio of Theta-Theta
graphs decreases to 4.64 as k' increases to 8. These are the first results on
the spanning properties of Theta-Theta graphs.Comment: 20 pages, 6 figures, 3 table
Verifying Safety Properties With the TLA+ Proof System
TLAPS, the TLA+ proof system, is a platform for the development and
mechanical verification of TLA+ proofs written in a declarative style requiring
little background beyond elementary mathematics. The language supports
hierarchical and non-linear proof construction and verification, and it is
independent of any verification tool or strategy. A Proof Manager uses backend
verifiers such as theorem provers, proof assistants, SMT solvers, and decision
procedures to check TLA+ proofs. This paper documents the first public release
of TLAPS, distributed with a BSD-like license. It handles almost all the
non-temporal part of TLA+ as well as the temporal reasoning needed to prove
standard safety properties, in particular invariance and step simulation, but
not liveness properties
- …
