14,532 research outputs found

    Background field method in the Wilson formulation

    Get PDF
    A cutoff regularization for a pure Yang-Mills theory is implemented within the background field method keeping explicit the gauge invariance of the effective action. The method has been applied to compute the beta function at one loop order.Comment: LaTex 13 pages, 1 figure; to appear in Nucl.Phys.

    The Ward Identity from the Background Field Dependence of the Effective Action

    Full text link
    The dependence of the effective action for gauge theories on the background field obeys an exact identity. We argue that for Abelian theories the Ward identity follows from the more general background field identity. This observation is particularly relevant for the anomalous Ward identity valid for gauge theories with an effective infrared cutoff as used for flow equations.Comment: 8 page

    Beta function and infrared renormalons in the exact Wilson renormalization group in Yang-Mills theory

    Get PDF
    We discuss the relation between the Gell-Mann-Low beta function and the ``flowing couplings'' of the Wilsonian action S_\L[\phi] of the exact renormalization group (RG) at the scale \L. This relation involves the ultraviolet region of \L so that the condition of renormalizability is equivalent to the Callan-Symanzik equation. As an illustration, by using the exact RG formulation, we compute the beta function in Yang-Mills theory to one loop (and to two loops for the scalar case). We also study the infrared (IR) renormalons. This formulation is particularly suited for this study since: ii) \L plays the r\^ole of a IR cutoff in Feynman diagrams and non-perturbative effects could be generated as soon as \L becomes small; iiii) by a systematical resummation of higher order corrections the Wilsonian flowing couplings enter directly into the Feynman diagrams with a scale given by the internal loop momenta; iiiiii) these couplings tend to the running coupling at high frequency, they differ at low frequency and remain finite all the way down to zero frequency.Comment: 19 pages, 6 figures, LaTex, uses epsfig, rotatin

    San Francisco Disaster Food System Report

    Get PDF
    This analysis includes recommendations to advance food resiliency for low-income and vulnerable populations in the event of disaster. The report highlights the fragility of the disaster food pipeline in San Francisco, focuses on lessons learned from other disasters, and suggests opportunities for philanthropy to shore up the disaster food system

    Wilson Renormalization Group for Supersymmetric Gauge Theories and Gauge Anomalies

    Get PDF
    We extend the Wilson renormalization group (RG) to supersymmetric theories. As this regularization scheme preserves supersymmetry, we exploit the superspace technique. To set up the formalism we first derive the RG flow for the massless Wess-Zumino model and deduce its perturbative expansion. We then consider N=1 supersymmetric Yang-Mills and show that the local gauge symmetry -broken by the regularization- can be recovered by a suitable choice of the RG flow boundary conditions. We restrict our analysis to the first loop, the generalization to higher loops presenting no difficulty due to the iterative nature of the procedure. Furthermore, adding matter fields, we reproduce the one-loop supersymmetric chiral anomaly to the second order in the vector field.Comment: 22 pages, 1 Postscript figure, uses amssym

    Pure spinor superstring in AdS_4 x CP^3 with unconstrained ghosts

    Full text link
    We construct the action for the pure spinor superstring in the coset description of AdS_4 x CP^3 superspace, using the variables which solve the pure spinor condition. As a test of the consistency of the approach, we use the background field method to verify the absence of central charge at the second order in the expansion and to show the one-loop finiteness of the effective action.Comment: 23 pages, 2 figure

    Phosphoproteins associated with cyclic nucleotide stimulation of ciliary motility in Paramecium

    Get PDF
    Permeabilized, MgATP-reactivated cells of Paramecium (models) respond to cyclic AMP and cyclic GMP by increasing forward swimming speed. In association with the motile response, cyclic AMP and 8-bromo-cyclic GMP (8-Br-cyclic GMP) stimulated protein phosphorylation. Cyclic AMP addition to permeabilized cells reproducibly stimulated the phosphorylation of 10 proteins, ranging in molecular weight from 15 to 110K (K = 10^3 M_r). 8-Br-cyclic GMP, which selectively activates the cyclic GMP-dependent protein kinase of Paramecium, stimulated the phosphorylation of a subset of the proteins phosphorylated by cyclic AMP. Ca^(2+) addition caused backward swimming and stimulated the phosphorylation of four substrates, including a 25K target that may also be phosphorylated in response to cyclic nucleotide addition. Ba^(2+) and Sr^(2+) also induced backward swimming, but did not cause detectable phosphorylation. To identify ciliary targets of cyclic nucleotide-dependent protein kinase activity, permeabilized cells were deciliated following reactivation of motility with Mg-[y-^(32)P]ATP in the presence or absence of cyclic nucleotide. Soluble proteins of the deciliation supernatant were enriched in 15 cyclic AMP-stimulated phosphoproteins, ranging in molecular weight from 15 to 95K. Most of the ciliary substrates were axonemal and could be released by high salt solution. A 29K protein that copurified in sucrose gradients with the 22S dynein, and a high molecular weight protein (greater than 300K) in the 19 S region were phosphorylated when cyclic AMP was added to permeabilized, motile cells. These data suggest that regulation of ciliary motility by cyclic AMP may include phosphorylation of dynein-associated proteins
    corecore