1,624 research outputs found

    Sensory over-responsivity and social cognition in ASD: Effects of aversive sensory stimuli and attentional modulation on neural responses to social cues.

    Get PDF
    Sensory over-responsivity (SOR) is a common condition in autism spectrum disorders (ASD) that is associated with greater social impairment. However, the mechanisms through which sensory stimuli may affect social functioning are not well understood. This study used fMRI to examine brain activity while interpreting communicative intent in 15 high-functioning youth with ASD and 16 age- and IQ-matched typically-developing (TD) controls. Participants completed the task with and without a tactile sensory distracter, and with and without instructions directing their attention to relevant social cues. When completing the task in the presence of the sensory distracter, TD youth showed increased activity in auditory language and frontal regions whereas ASD youth showed decreased activation in these areas. Instructions mitigated this effect such that ASD youth did not decrease activation during tactile stimulation; instead, the ASD group showed increased medial prefrontal activity. SOR severity modulated the effect of the tactile stimulus on social processing. Results demonstrate for the first time a neural mechanism through which sensory stimuli cause disruption of social cognition, and that attentional modulation can restore neural processing of social cues through prefrontal regulation. Findings have implications for novel, integrative interventions that incorporate attentional directives to target both sensory and social symptoms

    Neurodevelopmental Changes in Social Reinforcement Processing: A Functional Magnetic Resonance Imaging Study.

    Get PDF
    ObjectiveIn the current study we investigated neurodevelopmental changes in response to social and non-social reinforcement.MethodsFifty-three healthy participants including 16 early adolescents (age, 10-15 years), 16 late adolescents (age, 15-18 years), and 21 young adults (age, 21-25 years) completed a social/non-social reward learning task while undergoing functional magnetic resonance imaging. Participants responded to fractal image stimuli and received social or non-social reward/non-rewards according to their accuracy. ANOVAs were conducted on both the blood oxygen level dependent response data and the product of a context-dependent psychophysiological interaction (gPPI) analysis involving ventromedial prefrontal cortex (vmPFC) and bilateral insula cortices as seed regions.ResultsEarly adolescents showed significantly increased activation in the amygdala and anterior insula cortex in response to non-social monetary rewards relative to both social reward/non-reward and monetary non-rewards compared to late adolescents and young adults. In addition, early adolescents showed significantly more positive connectivity between the vmPFC/bilateral insula cortices seeds and other regions implicated in reinforcement processing (the amygdala, posterior cingulate cortex, insula cortex, and lentiform nucleus) in response to non-reward and especially social non-reward, compared to late adolescents and young adults.ConclusionIt appears that early adolescence may be marked by: (i) a selective increase in responsiveness to non-social, relative to social, rewards; and (ii) enhanced, integrated functioning of reinforcement circuitry for non-reward, and in particular, with respect to posterior cingulate and insula cortices, for social non-reward

    Improving language mapping in clinical fMRI through assessment of grammar.

    Get PDF
    IntroductionBrain surgery in the language dominant hemisphere remains challenging due to unintended post-surgical language deficits, despite using pre-surgical functional magnetic resonance (fMRI) and intraoperative cortical stimulation. Moreover, patients are often recommended not to undergo surgery if the accompanying risk to language appears to be too high. While standard fMRI language mapping protocols may have relatively good predictive value at the group level, they remain sub-optimal on an individual level. The standard tests used typically assess lexico-semantic aspects of language, and they do not accurately reflect the complexity of language either in comprehension or production at the sentence level. Among patients who had left hemisphere language dominance we assessed which tests are best at activating language areas in the brain.MethodWe compared grammar tests (items testing word order in actives and passives, wh-subject and object questions, relativized subject and object clauses and past tense marking) with standard tests (object naming, auditory and visual responsive naming), using pre-operative fMRI. Twenty-five surgical candidates (13 females) participated in this study. Sixteen patients presented with a brain tumor, and nine with epilepsy. All participants underwent two pre-operative fMRI protocols: one including CYCLE-N grammar tests (items testing word order in actives and passives, wh-subject and object questions, relativized subject and object clauses and past tense marking); and a second one with standard fMRI tests (object naming, auditory and visual responsive naming). fMRI activations during performance in both protocols were compared at the group level, as well as in individual candidates.ResultsThe grammar tests generated more volume of activation in the left hemisphere (left/right angular gyrus, right anterior/posterior superior temporal gyrus) and identified additional language regions not shown by the standard tests (e.g., left anterior/posterior supramarginal gyrus). The standard tests produced more activation in left BA 47. Ten participants had more robust activations in the left hemisphere in the grammar tests and two in the standard tests. The grammar tests also elicited substantial activations in the right hemisphere and thus turned out to be superior at identifying both right and left hemisphere contribution to language processing.ConclusionThe grammar tests may be an important addition to the standard pre-operative fMRI testing

    Physical Activity and Hippocampal Sub-Region Structure in Older Adults with Memory Complaints.

    Get PDF
    BackgroundPhysical activity (PA) plays a major role in maintaining cognition in older adults. PA has been shown to be correlated with total hippocampal volume, a memory-critical region within the medial temporal lobe (MTL). However, research on associations between PA and MTL sub-region integrity is limited.ObjectiveTo examine the relationship between PA, MTL thickness, and its sub-regions, and cognitive function in non-demented older adults with memory complaints.MethodsTwenty-nine subjects aged ≥60 years, with memory complaints were recruited for this cross-sectional study. PA was tracked for 7 days using accelerometers, and average number of steps/day determined. Subjects were categorized into two groups: those who walked ≤4000 steps/day (lower PA) and those with >4000 steps/day (higher PA). Subjects received neuropsychological testing and 3T MRI scans. Nonparametric ANCOVAs controlling for age examined differences between the two groups.ResultsTwenty-six subjects aged 72.7(8.1) years completed the study. The higher PA group (n = 13) had thicker fusiform gyrus (median difference = 0.11 mm, effect size (ES) = 1.43, p = 0.001) and parahippocampal cortex (median difference = 0.12 mm, ES = 0.93, p = 0.04) compared to the lower PA group. The higher PA group also exhibited superior performance in attention and information-processing speed (median difference = 0.90, ES = 1.61, p = 0.003) and executive functioning (median difference = 0.97, ES = 1.24, p = 0.05). Memory recall was not significantly different between the two groups.ConclusionOlder non-demented individuals complaining of memory loss who walked >4000 steps each day had thicker MTL sub-regions and better cognitive functioning than those who walked ≤4000 steps. Future studies should include longitudinal analyses and explore mechanisms mediating hippocampal related atrophy

    Presurgical language fMRI: Mapping of six critical regions.

    Get PDF
    Language mapping is a key goal in neurosurgical planning. fMRI mapping typically proceeds with a focus on Broca's and Wernicke's areas, although multiple other language-critical areas are now well-known. We evaluated whether clinicians could use a novel approach, including clinician-driven individualized thresholding, to reliably identify six language regions, including Broca's Area, Wernicke's Area (inferior, superior), Exner's Area, Supplementary Speech Area, Angular Gyrus, and Basal Temporal Language Area. We studied 22 epilepsy and tumor patients who received Wada and fMRI (age 36.4[12.5]; Wada language left/right/mixed in 18/3/1). fMRI tasks (two × three tasks) were analyzed by two clinical neuropsychologists who flexibly thresholded and combined these to identify the six regions. The resulting maps were compared to fixed threshold maps. Clinicians generated maps that overlapped significantly, and were highly consistent, when at least one task came from the same set. Cases diverged when clinicians prioritized different language regions or addressed noise differently. Language laterality closely mirrored Wada data (85% accuracy). Activation consistent with all six language regions was consistently identified. In blind review, three external, independent clinicians rated the individualized fMRI language maps as superior to fixed threshold maps; identified the majority of regions significantly more frequently; and judged language laterality to mirror Wada lateralization more often. These data provide initial validation of a novel, clinician-based approach to localizing language cortex. They also demonstrate clinical fMRI is superior when analyzed by an experienced clinician and that when fMRI data is of low quality judgments of laterality are unreliable and should be withheld. Hum Brain Mapp 38:4239-4255, 2017. © 2017 Wiley Periodicals, Inc

    The role of precuneus and left inferior frontal cortex during source memory episodic retrieval

    Get PDF
    The posterior medial parietal cortex and left prefrontal cortex (PFC) have both been implicated in the recollection of past episodes. In a previous study, we found the posterior precuneus and left lateral inferior frontal cortex to be activated during episodic source memory retrieval. This study further examines the role of posterior precuneal and left prefrontal activation during episodic source memory retrieval using a similar source memory paradigm but with longer latency between encoding and retrieval. Our results suggest that both the precuneus and the left inferior PFC are important for regeneration of rich episodic contextual associations and that the precuneus activates in tandem with the left inferior PFC during correct source retrieval. Further, results suggest that the left ventro-lateral frontal region/ frontal operculum is involved in searching for task-relevant information (BA 47) and subsequent monitoring or scrutiny (BA 44/45) while regions in the dorsal inferior frontal cortex are important for information selection (BA 45/46). (C) 2005 Elsevier Inc. All rights reserved.NIGMS NIH HHS [2 T32 GM 07266]info:eu-repo/semantics/publishedVersio
    corecore