473 research outputs found
Recommended from our members
Facing fear: Expression of fear facilitates processing of emotional information
Evidence shows that manipulating the expressive component of fear can influence the processing of emotional information. Participants unobtrusively produced the expressive behaviors typical of fear, anger or happiness. Participants producing the expression of fear were faster at classifying
verbal material with emotional content than participants producing the expressions of happiness or anger. These effects were especially pronounced for participants who were generally sensitive to their own bodily cues, as indicated by their degree of field-dependence measured by the Rod-and-Frame
Task (Witkin & Asch, 1948). The results suggest that one way of eliciting the cognitive consequences of fear is by inducing the embodied expressive behavior.</jats:p
Defining motility in the Staphylococci
The ability of bacteria to move is critical for their survival in diverse environments and multiple ways have evolved to achieve this. Two forms of motility have recently been described for Staphylococcus aureus, an organism previously considered to be non-motile. One form is called spreading, which is a type of sliding motility and the second form involves comet formation, which has many observable characteristics associated with gliding motility. Darting motility has also been observed in Staphylococcus epidermidis. This review describes how motility is defined and how we distinguish between passive and active motility. We discuss the characteristics of the various forms of Staphylococci motility, the molecular mechanisms involved and the potential future research directions
Aquaporins: important but elusive drug targets.
The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators
Oncologic Long-Term Results of Robot-Assisted Minimally Invasive Thoraco-Laparoscopic Esophagectomy with Two-Field Lymphadenectomy for Esophageal Cancer
Restored Agricultural Wetlands in central Iowa: Habitat Quality and Amphibian Response
Amphibians are declining throughout the United States and worldwide due, partly, to habitat loss. Conservation practices on the landscape restore wetlands to denitrify tile drainage effluent and restore ecosystem services. Understanding how water quality, hydroperiod, predation, and disease affect amphibians in restored wetlands is central to maintaining healthy amphibian populations in the region. We examined the quality of amphibian habitat in restored wetlands relative to reference wetlands by comparing species richness, developmental stress, and adult leopard frog (Lithobates pipiens) survival probabilities to a suite of environmental metrics. Although measured habitat variables differed between restored and reference wetlands, differences appeared to have sub-lethal rather than lethal effects on resident amphibian populations. There were few differences in amphibian species richness and no difference in estimated survival probabilities between wetland types. Restored wetlands had more nitrate and alkaline pH, longer hydroperiods, and were deeper, whereas reference wetlands had more amphibian chytrid fungus zoospores in water samples and resident amphibians exhibited increased developmental stress. Restored and reference wetlands are both important components of the landscape in central Iowa and maintaining a complex of fish-free wetlands with a variety of hydroperiods will likely contribute to the persistence of amphibians in this landscape
Home-based isometric exercise training induced reductions resting blood pressure
Purpose:
Isometric exercise training (IET) reduces resting blood pressure (BP). Most previous protocols impose exercise barriers which undermine its effectiveness as a potential physical therapy for altering BP. An inexpensive, home-based programme would promote IET as a valuable tool in the fight against hypertension. The aims of this study were: (a) to investigate whether home-based wall squat training could successfully reduce resting BP, and (b) to explore the physiological variables that might mediate a change in resting BP.
Methods:
Twenty-eight healthy normotensive males were randomly assigned to a control and a 4 week home-based IET intervention using a crossover design with a 4 week ‘washout’ period in-between. Wall squat training was completed 3x weekly over 4 weeks with 48 hours between sessions. Each session comprised 4x 2 minute bouts of wall squat exercise performed at a participant-specific knee joint angle relative to a target HR of 95% HRpeak, with 2 minutes rest between bouts. Resting heart rate, BP, cardiac output, total peripheral resistance and stroke volume were taken at baseline and post each condition.
Results:
Resting BP (systolic = -4 ± 5, diastolic = -3 ± 3 and mean arterial = -3 ± 3 mmHg), cardiac output (-0.54 ± 0.66 L∙min-1) and heart rate (-5 ± 7 beats∙min-1) were all reduced following IET, with no change in total peripheral resistance or stroke volume compared to the control.
Conclusion:
These findings suggest the wall squat provides an effective method for reducing resting BP in the home resulting primarily from a reduction in resting heart rate
Quantitative analysis of CT-perfusion parameters in the evaluation of brain gliomas and metastases
<p>Abstract</p> <p>Background</p> <p>The paper reports a quantitative analysis of the perfusion maps of 22 patients, affected by gliomas or by metastasis, with the aim of characterizing the malignant tissue with respect to the normal tissue. The gold standard was obtained by histological exam or nuclear medicine techniques. The perfusion scan provided 11 parametric maps, including Cerebral Blood Volume (CBV), Cerebral Blood Flow (CBF), Average Perfusion (P<sub>mean</sub>) and Permeability-surface area product (PS).</p> <p>Methods</p> <p>The perfusion scans were performed after the injection of 40 ml of non-ionic contrast agent, at an injection rate of 8 ml/s, and a 40 s cine scan with 1 s interval was acquired. An expert radiologist outlined the region of interest (ROI) on the unenhanced CT scan, by using a home-made routine. The mean values with their standard deviations inside the outlined ROIs and the contralateral ROIs were calculated on each map. Statistical analyses were used to investigate significant differences between diseased and normal regions. Receiving Operating Characteristic (ROC) curves were also generated.</p> <p>Results</p> <p>Tumors are characterized by higher values of all the perfusion parameters, but after the statistical analysis, only the <it>PS</it>, <it>Pat</it><sub><it>Rsq </it></sub>(Patlak Rsquare) and <it>T</it><sub><it>peak </it></sub>(Time to Peak) resulted significant. ROC curves, confirmed both <it>Pat</it><sub><it>Rsq </it></sub>and <it>PS </it>as equally reliable metrics for discriminating between malignant and normal tissues, with areas under curves (AUCs) of 0.82 and 0.81, respectively.</p> <p>Conclusion</p> <p>CT perfusion is a useful and non invasive technique for evaluating brain neoplasms. Malignant and normal tissues can be accurately differentiated using perfusion map, with the aim of performing tumor diagnosis and grading, and follow-up analysis.</p
- …
