854 research outputs found
EROs found behind lensing clusters: II.Empirical properties, classification, and SED modelling based on multi-wavelength observations
We study the properties and nature of extremely red galaxies (ERO, R-K>5.6)
found behind two lensing clusters and compare them with other known galaxy
populations. New HST/ACS observations, Spitzer IRAC and MIPS, and Chandra/ACIS
observations of the two lensing clusters Abell 1835 and AC114 contemplate our
earlier optical and near-IR observations and have been used to study extremely
red objects (EROs) in these deep fields. We have found 6 and 9 EROs in Abell
1835 and AC114. Several (7) of these objects are undetected up to the I and/or
z band, and are hence ``optical'' drop-out sources. The photometric redshifts
of most of our sources (80%) are z~0.7-1.5. According to simple colour-colour
diagrams the majority of our objects would be classified as hosting old stellar
populations. However, there are clear signs of dusty starbursts for several
among them. These objects correspond to the most extreme ones in R-K colour. We
estimate a surface density of (0.97+-0.31) arcmin-2 for EROs with (R-K>5.6) at
K<20.5. Among our 15 EROs 6 (40 %) also classify as distant red galaxies
(DRGs). 11 of 13 EROs with available IRAC photometry also fulfil the selection
criteria for IRAC selected EROs (IEROs) of Yan et al. (2004). SED modelling
shows that ~ 36 % of the IEROs in our sample are luminous or ultra-luminous
infrared galaxies ((U)LIRG). Some very red DRGs are found to be very dusty
starbursts, even (U)LIRGs, as also supported by their mid-IR photometry. No
indication for AGNs is found, although faint activity cannot be excluded for
all objects. From mid-IR and X-ray data 5 objects are clearly classified as
starbursts. The derived properties are quite similar to those of DRGs and
IEROs, except for 5 extreme objects in terms of colours, for which a very high
extinction (Av>3) is found.Comment: 20 pages, 10 figures, accepted for publication in A&
Planck's Dusty GEMS: Gravitationally lensed high-redshift galaxies discovered with the Planck survey
We present an analysis of 11 bright far-IR/submm sources discovered through a
combination of the Planck survey and follow-up Herschel-SPIRE imaging. Each
source has a redshift z=2.2-3.6 obtained through a blind redshift search with
EMIR at the IRAM 30-m telescope. Interferometry obtained at IRAM and the SMA,
and optical/near-infrared imaging obtained at the CFHT and the VLT reveal
morphologies consistent with strongly gravitationally lensed sources.
Additional photometry was obtained with JCMT/SCUBA-2 and IRAM/GISMO at 850 um
and 2 mm, respectively. All objects are bright, isolated point sources in the
18 arcsec beam of SPIRE at 250 um, with spectral energy distributions peaking
either near the 350 um or the 500 um bands of SPIRE, and with apparent
far-infrared luminosities of up to 3x10^14 L_sun. Their morphologies and sizes,
CO line widths and luminosities, dust temperatures, and far-infrared
luminosities provide additional empirical evidence that these are strongly
gravitationally lensed high-redshift galaxies. We discuss their dust masses and
temperatures, and use additional WISE 22-um photometry and template fitting to
rule out a significant contribution of AGN heating to the total infrared
luminosity. Six sources are detected in FIRST at 1.4 GHz. Four have flux
densities brighter than expected from the local far-infrared-radio correlation,
but in the range previously found for high-z submm galaxies, one has a deficit
of FIR emission, and 6 are consistent with the local correlation. The global
dust-to-gas ratios and star-formation efficiencies of our sources are
predominantly in the range expected from massive, metal-rich, intense,
high-redshift starbursts. An extensive multi-wavelength follow-up programme is
being carried out to further characterize these sources and the intense
star-formation within them.Comment: A&A accepte
A peculiar galaxy appears at redshift 11: properties of a moderate redshift interloper
Laporte et al. (2011) reported a very high redshift galaxy candidate: a
lensed J-band dropout (A2667-J1). J1 has a photometric redshift of z=9.6-12,
the probability density function for which permits no low or intermediate z
solution. We here report new spectroscopic observations of this galaxy with
VLT/XShooter, which show clear [OIII]5007AA, Ly-alpha, H-alpha, and H-beta
emission and place the galaxy firmly at z=2.082. The oxygen lines contribute
only ~25% to the H-band flux, and do not significantly affect the dropout
selection of J1. After correcting the broadband fluxes for line emission, we
identify two roughly equally plausible natures for A2667-J1: either it is young
heavily reddened starburst, or a maximally old system with a very pronounced
4000AA break, upon which a minor secondary burst of star formation is
superimposed. Fits show that to make a 3 sigma detection of this object in the
B-band (V-band), imaging of depth AB=30.2 (29.5) would be required - despite
the relatively bright NIR magnitude, we would need optical data of equivalent
depth to the Hubble Ultra Deep Field to rule out the mid-z solution on purely
photometric grounds. Assuming that this stellar population can be scaled to the
NIR magnitudes of recent HST/WFC3 IR-selected galaxies, we conclude that
infeasibly deep optical data AB~32 would be required for the same level of
security. There is a population of galaxies at z~2 with continuum colours alone
that mimic those of our z=7-12 candidates.Comment: Accepted by Monthly Notices. 5 pages, 2 figure
News from z~6-10 galaxy candidates found behind gravitational lensing clusters
We summarise the current status of our project to identify and study z~6-10 galaxies thanks to strong gravitational lensing. Building on the detailed work from Richard et al. (2006), we present results from new follow-up observations (imaging) undertaken with ACS/HST and the Spitzer Space Telescope and compare our results with findings from the Hubble Ultra-Deep Field (UDF). These new observations are in agreement with the high-z nature for the vast majority of the candidates presented in Richard et al. (2006). We also discuss the properties of other optical dropout sources found in our searches and related objects (EROs, sub-mm galaxies,...) from other surveys
The SAFRAN-ISBA-MODCOU hydrometeorological model applied over France
An edited version of this paper was published by AGU. Copyright (2008) American Geophysical UnionThe hydrometeorological model SIM consists in a meterological analysis system (SAFRAN), a land surface model (ISBA) and a hydrogeological model (MODCOU). It generates atmospheric forcing at an hourly time step, and it computes water and surface energy budgets, the river ow at more than 900 rivergauging stations, and the level of several aquifers. SIM was extended over all of France in order to have a homogeneous nation-wide monitoring of the water resources: it can therefore be used to forecast flood risk and to monitor drought risk over the entire nation. The hydrometeorologival model was applied over a 10-year period from 1995 to 2005. In this paper the databases used by the SIM model are presented, then the 10-year simulation is assessed by using the observations of daily stream-flow, piezometric head, and snow depth. This assessment shows that SIM is able to reproduce the spatial and temporal variabilities of the water fluxes. The efficiency is above 0.55 (reasonable results) for 66 % of the simulated rivergages, and above 0.65 (rather good results) for 36 % of them. However, the SIM system produces worse results during the driest years, which is more likely due to the fact that only few aquifers are simulated explicitly. The annual evolution of the snow depth is well reproduced, with a square correlation coeficient around 0.9 over the large altitude range in the domain. The stream ow observations were used to estimate the overall error of the simulated latent heat ux, which was estimated to be less than 4 %
Optical Intensity Interferometry with the Cherenkov Telescope Array
With its unprecedented light-collecting area for night-sky observations, the
Cherenkov Telescope Array (CTA) holds great potential for also optical stellar
astronomy, in particular as a multi-element intensity interferometer for
realizing imaging with sub-milliarcsecond angular resolution. Such an
order-of-magnitude increase of the spatial resolution achieved in optical
astronomy will reveal the surfaces of rotationally flattened stars with
structures in their circumstellar disks and winds, or the gas flows between
close binaries. Image reconstruction is feasible from the second-order
coherence of light, measured as the temporal correlations of arrival times
between photons recorded in different telescopes. This technique (once
pioneered by Hanbury Brown and Twiss) connects telescopes only with electronic
signals and is practically insensitive to atmospheric turbulence and to
imperfections in telescope optics. Detector and telescope requirements are very
similar to those for imaging air Cherenkov observatories, the main difference
being the signal processing (calculating cross correlations between single
camera pixels in pairs of telescopes). Observations of brighter stars are not
limited by sky brightness, permitting efficient CTA use during also bright-Moon
periods. While other concepts have been proposed to realize kilometer-scale
optical interferometers of conventional amplitude (phase-) type, both in space
and on the ground, their complexity places them much further into the future
than CTA, which thus could become the first kilometer-scale optical imager in
astronomy.Comment: Astroparticle Physics, in press; 47 pages, 10 figures, 124 reference
Optical dropout galaxies lensed by the cluster A2667
We investigate the nature and the physical properties of z, Y and J-dropout
galaxies selected behind the lensing cluster A2667. This field is part of our
project aimed at identifying z~7-10 candidates accessible to spectroscopic
studies, based on deep photometry with ESO/VLT HAWK-I and FORS2 (zYJH and
Ks-band images, AB(3 sigma)~26-27) on a sample of lensing clusters extracted
from our multi-wavelength combined surveys with SPITZER, HST, and Herschel. In
this paper we focus on the complete Y and J-dropout sample, as well as the
bright z-dropouts fulfilling the selection criteria by Capak et al. (2011). 10
candidates are selected within the common field of ~33 arcmin2 (effective area
once corrected for contamination and lensing dilution). All of them are
detected in H and Ks bands in addition to J and/or IRAC 3.6/4.5, with
H(AB)~23.4 to 25.2, and have modest magnification factors. Although best-fit
photometric redshifts place all these candidates at high-z, the contamination
by low-z interlopers is estimated at 50-75% level based on previous studies,
and the comparison with the blank-field WIRCAM Ultra-Deep Survey (WUDS). The
same result is obtained when photometric redshifts include a luminosity prior,
allowing us to remove half of the original sample as likely z~1.7-3 interlopers
with young stellar pulations and strong extinction. Two additional sources
among the remaining sample could be identified at low-z based on a detection at
24 microns and on the HST z_850 band. These low-z interlopers are not well
described by current templates given the large break, and cannot be easily
identified based solely on optical and near-IR photometry. Given the estimated
dust extinction and high SFRs, some of them could be also detected in the IR or
sub-mm bands. After correction for likely contaminants, the observed counts at
z>7.5 seem to be in agreement with an evolving LF. (abridged)Comment: 18 pages, 11 figures. Accepted for publication in A&
Cluster Lenses
Clusters of galaxies are the most recently assembled, massive, bound
structures in the Universe. As predicted by General Relativity, given their
masses, clusters strongly deform space-time in their vicinity. Clusters act as
some of the most powerful gravitational lenses in the Universe. Light rays
traversing through clusters from distant sources are hence deflected, and the
resulting images of these distant objects therefore appear distorted and
magnified. Lensing by clusters occurs in two regimes, each with unique
observational signatures. The strong lensing regime is characterized by effects
readily seen by eye, namely, the production of giant arcs, multiple-images, and
arclets. The weak lensing regime is characterized by small deformations in the
shapes of background galaxies only detectable statistically. Cluster lenses
have been exploited successfully to address several important current questions
in cosmology: (i) the study of the lens(es) - understanding cluster mass
distributions and issues pertaining to cluster formation and evolution, as well
as constraining the nature of dark matter; (ii) the study of the lensed objects
- probing the properties of the background lensed galaxy population - which is
statistically at higher redshifts and of lower intrinsic luminosity thus
enabling the probing of galaxy formation at the earliest times right up to the
Dark Ages; and (iii) the study of the geometry of the Universe - as the
strength of lensing depends on the ratios of angular diameter distances between
the lens, source and observer, lens deflections are sensitive to the value of
cosmological parameters and offer a powerful geometric tool to probe Dark
Energy. In this review, we present the basics of cluster lensing and provide a
current status report of the field.Comment: About 120 pages - Published in Open Access at:
http://www.springerlink.com/content/j183018170485723/ . arXiv admin note:
text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes
CC Attribution 3.0 License.Final revised paper also available at http://www.geosci-model-dev.net/6/929/2013/gmd-6-929-2013.pdfInternational audienceSURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surface: nature, town, inland water and ocean. It can be run either coupled or in offline mode. It is mostly based on pre-existing, well validated scientific models. It can be used in offline mode (from point scale to global runs) or fully coupled with an atmospheric model. SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. It also includes a data assimilation module. The main principles of the organization of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally the main applications of the code are summarized. The current applications are extremely diverse, ranging from surface monitoring and hydrology to numerical weather prediction and global climate simulations. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage
Root trenching: a useful tool to estimate autotrophic soil respiration? A case study in an Austrian mountain forest
We conducted a trenching experiment in a mountain forest in order to assess the contribution of theautotrophic respiration to total soil respiration and evaluate trenching as a technique to achieve it. We hypothesised that the trenching experiment would alter both microbial biomass and microbial community structure and that Wne roots (less than 2 mm diameter) would be decomposed within one growing season. Soil CO2 eZux was measured roughlybiweekly over two growing seasons. Root presence and morphology parameters, as well as the soil microbial community were measured prior to trenching, 5 and 15 months after trenching. The trenched plots emitted about 20 and 30% less CO2 than the control plots in the Wrst and secondgrowing season, respectively. Roots died in trenched plots, but root decay was slow. After 5 and 15 months, Wne root biomass was decreased by 9% (not statistically diferent)and 30%, (statistically diVerent) respectively. When wecorrected for the additional trenched-plot CO2 eZux due to Wne root decomposition, the autotrophic soil respiration rose to »26% of the total soil respiration for the Wrst growing season, and to »44% for the second growing season.Soil microbial biomass and community structure was not altered by the end of the second growing season. We conclude that trenching can give accurate estimates of the autotrophic and heterotrophic components of soil respiration, ifmethodological side eVects are accounted for, only
- …
