1,119 research outputs found
On Equivalence of Critical Collapse of Non-Abelian Fields
We continue our study of the gravitational collapse of spherically symmetric
skyrmions. For certain families of initial data, we find the discretely
self-similar Type II critical transition characterized by the mass scaling
exponent and the echoing period . We
argue that the coincidence of these critical exponents with those found
previously in the Einstein-Yang-Mills model is not accidental but, in fact, the
two models belong to the same universality class.Comment: 7 pages, REVTex, 2 figures included, accepted for publication in
Physical Review
In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-Synuclein within E. coli cells
α-Synuclein is a small protein strongly implicated in the pathogenesis of Parkinson’s disease and related neurodegenerative disorders. We report here the use of in-cell NMR spectroscopy to observe directly the structure and dynamics of this protein within E. coli cells. To improve the accuracy in the measurement of backbone chemical shifts within crowded in-cell NMR spectra, we have developed a deconvolution method to reduce inhomogeneous line broadening within cellular samples. The resulting chemical shift values were then used to evaluate the distribution of secondary structure populations which, in the absence of stable tertiary contacts, are a most effective way to describe the conformational fluctuations of disordered proteins. The results indicate that, at least within the bacterial cytosol, α-synuclein populates a highly dynamic state that, despite the highly crowded environment, has the same characteristics as the disordered monomeric form observed in aqueous solution
Thermal quenches in N=2* plasmas
We exploit gauge/gravity duality to study `thermal quenches' in a plasma of
the strongly coupled N=2* gauge theory. Specifically, we consider the response
of an initial thermal equilibrium state of the theory under variations of the
bosonic or fermionic mass, to leading order in m/T<<1. When the masses are made
to vary in time, novel new counterterms must be introduced to renormalize the
boundary theory. We consider transitions the conformal super-Yang-Mills theory
to the mass deformed gauge theory and also the reverse transitions. By
construction, these transitions are controlled by a characteristic time scale
\calt and we show how the response of the system depends on the ratio of this
time scale to the thermal time scale 1/T. The response shows interesting
scaling behaviour both in the limit of fast quenches with T\calt<<1 and slow
quenches with T\calt>>1. In the limit that T\calt\to\infty, we observe the
expected adiabatic response. For fast quenches, the relaxation to the final
equilibrium is controlled by the lowest quasinormal mode of the bulk scalar
dual to the quenched operator. For slow quenches, the system relaxes with a
(nearly) adiabatic response that is governed entirely by the late time profile
of the mass. We describe new renormalization scheme ambiguities in defining
gauge invariant observables for the theory with time dependant couplings.Comment: 78 pages, 17 figure
A de Sitter Hoedown
Rotating black holes in de Sitter space are known to have interesting limits
where the temperatures of the black hole and cosmological horizon are equal. We
give a complete description of the thermal phase structure of all allowed
rotating black hole configurations. Only one configuration, the rotating Nariai
limit, has the black hole and cosmological horizons both in thermal and
rotational equilibrium, in that both the temperatures and angular velocities of
the two horizons coincide. The thermal evolution of the spacetime is shown to
lead to the pure de Sitter spacetime, which is the most entropic configuration.
We then provide a comprehensive study of the wave equation for a massless
scalar in the rotating Nariai geometry. The absorption cross section at the
black hole horizon is computed and a condition is found for when the scattering
becomes superradiant. The boundary-to-boundary correlators at finite
temperature are computed at future infinity. The quasinormal modes are obtained
in explicit form. Finally, we obtain an expression for the expectation value of
the number of particles produced at future infinity starting from a vacuum
state with no incoming particles at past infinity. Some of our results are used
to provide further evidence for a recent holographic proposal between the
rotating Nariai geometry and a two-dimensional conformal field theory.Comment: 35 + 1 pages, 9 figures; v3: typos correcte
A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli
Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as “phenotypic noise.” In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alon
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Increasing the Depth of Current Understanding: Sensitivity Testing of Deep-Sea Larval Dispersal Models for Ecologists
Larval dispersal is an important ecological process of great interest to conservation and the establishment of marine protected areas. Increasing numbers of studies are turning to biophysical models to simulate dispersal patterns, including in the deep-sea, but for many ecologists unassisted by a physical oceanographer, a model can present as a black box. Sensitivity testing offers a means to test the models' abilities and limitations and is a starting point for all modelling efforts. The aim of this study is to illustrate a sensitivity testing process for the unassisted ecologist, through a deep-sea case study example, and demonstrate how sensitivity testing can be used to determine optimal model settings, assess model adequacy, and inform ecological interpretation of model outputs. Five input parameters are tested (timestep of particle simulator (TS), horizontal (HS) and vertical separation (VS) of release points, release frequency (RF), and temporal range (TR) of simulations) using a commonly employed pairing of models. The procedures used are relevant to all marine larval dispersal models. It is shown how the results of these tests can inform the future set up and interpretation of ecological studies in this area. For example, an optimal arrangement of release locations spanning a release area could be deduced; the increased depth range spanned in deep-sea studies may necessitate the stratification of dispersal simulations with different numbers of release locations at different depths; no fewer than 52 releases per year should be used unless biologically informed; three years of simulations chosen based on climatic extremes may provide results with 90% similarity to five years of simulation; and this model setup is not appropriate for simulating rare dispersal events. A step-by-step process, summarising advice on the sensitivity testing procedure, is provided to inform all future unassisted ecologists looking to run a larval dispersal simulation
Cellular Radiosensitivity: How much better do we understand it?
Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies.
Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
- …
