178 research outputs found
Vernier spectrometer using counter-propagating soliton microcombs
Acquisition of laser frequency with high resolution under continuous and
abrupt tuning conditions is important for sensing, spectroscopy and
communications. Here, a single microresonator provides rapid and broad-band
measurement of frequencies across the optical C-band with a relative frequency
precision comparable to conventional dual frequency comb systems. Dual-locked
counter-propagating solitons having slightly different repetition rates are
used to implement a Vernier spectrometer. Laser tuning rates as high as 10
THz/s, broadly step-tuned lasers, multi-line laser spectra and also molecular
absorption lines are characterized using the device. Besides providing a
considerable technical simplification through the dual-locked solitons and
enhanced capability for measurement of arbitrarily tuned sources, this work
reveals possibilities for chip-scale spectrometers that greatly exceed the
performance of table-top grating and interferometer-based devices
Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators
Recent advances in nonlinear optics have revolutionized integrated photonics, providing on-chip solutions to a wide range of new applications. Currently, state of the art integrated nonlinear photonic devices are mainly based on dielectric material platforms, such as Si₃N₄ and SiO₂. While semiconductor materials feature much higher nonlinear coefficients and convenience in active integration, they have suffered from high waveguide losses that prevent the realization of efficient nonlinear processes on-chip. Here, we challenge this status quo and demonstrate a low loss AlGaAs-on-insulator platform with anomalous dispersion and quality (Q) factors beyond 1.5 × 10⁶. Such a high quality factor, combined with high nonlinear coefficient and small mode volume, enabled us to demonstrate a Kerr frequency comb threshold of only ∼36 µW in a resonator with a 1 THz free spectral range, ∼100 times lower compared to that in previous semiconductor platforms. Moreover, combs with broad spans (>250 nm) have been generated with a pump power of ∼300 µW, which is lower than the threshold power of state-of the-art dielectric micro combs. A soliton-step transition has also been observed for the first time in an AlGaAs resonator
Quantum diffusion of microcavity solitons
Coherently pumped (Kerr) solitons in an ideal optical microcavity are expected to undergo random quantum motion that determines fundamental performance limits in applications of the soliton microcombs. Here this random walk and its impact on Kerr soliton timing jitter are studied experimentally. The quantum limit is discerned by measuring the relative position of counter-propagating solitons. Their relative motion features weak interactions and also presents common-mode suppression of technical noise, which typically hides the quantum fluctuations. This is in contrast to co-propagating solitons, which are found to have relative timing jitter well below the quantum limit of a single soliton on account of strong correlation of their mutual motion. Good agreement is found between theory and experiment. The results establish the fundamental limits to timing jitter in soliton microcombs and provide new insights on multisoliton physics
Applications and Integration of Optical Frequency Combs
Optical frequency combs have a wide range of applications in science and technology, including but not limited to timekeeping, optical frequency synthesis, spectroscopy, searching for exoplanets, ranging, and microwave generation. The integration of microresonator with other photonic components enables the high-volume production of wafer-scale optical frequency combs, soliton microcombs. However, it faces two considerable obstacles: optical isolation, which is challenging to integrate on-chip at acceptable performance levels, and power-hungry electronic control circuits, which are required for the generation and stabilization of soliton microcombs. In this thesis, we describe the design and early commissioning of the laser frequency comb for astronomical calibration using electro-optic modulation. We also focus on the realization of a novel and compact chip-scale optical frequency comb, soliton microcomb, including the progress made towards the visible soliton microcomb generation and the demonstration of low power operation of a soliton microcomb along contours of constant power in the phase space. We introduce a soliton spectrometer using dual-locked counter-propagating soliton microcombs to provide high-resolution frequency measurement. Finally, we look into the integration of lasers and high-Q microresonators. The self-injection locking process has been shown to create a new turnkey soliton operating point that eliminates difficult-to-integrate optical isolation as well as complex startup and feedback loops. Moreover, this technique also simplifies the access to high-efficiency dark soliton states without special dispersion engineering of microresonators
A self-starting bi-chromatic LiNbO_3 soliton microcomb
The wide range of functions that are possible with lithium niobate (LN) waveguide devices, including phase and intensity modulation, second-harmonic generation, and difference-frequency generation, makes it attractive as a potential microcomb material. LN microcombs would combine essential comb self-referencing and control functions with the pulse generation process in a single microresonator device. Here, we demonstrate a soliton microcomb in a monolithic high-Q LN resonator. Direct frequency doubling of the soliton spectrum is observed inside the same cavity. The LN soliton mode-locking process also self-starts and allows bi-directional switching of soliton states, effects that are shown to result from the LN photorefractive effect. The Kerr solitons exhibit a self-frequency shift resulting from the Raman effect of LN. This microcomb platform can dramatically simplify miniature time keeping, frequency synthesis/division, and spectroscopy systems. Moreover, direct generation of femtosecond timescale pulses within LN microresonators can benefit quantum photonics and signal processing systems
Towards visible soliton microcomb generation
Frequency combs have applications that extend from the ultra-violet into the mid-infrared bands. Microcombs, a miniature and often semiconductor-chip-based device, can potentially access most of these applications, but are currently more limited in spectral reach. Here, we demonstrate mode-locked silica microcombs with emission near the edge of the visible spectrum. By using both geometrical and mode-hybridization dispersion control, devices are engineered for soliton generation while also maintaining optical Q factors as high as 80 million. Electronics-bandwidth-compatible (20 GHz) soliton mode locking is achieved with low pumping powers (parametric oscillation threshold powers as low as 5.4 mW). These are the shortest wavelength soliton microcombs demonstrated to date and could be used in miniature optical clocks. The results should also extend to visible and potentially ultra-violet bands
Measurement of the Earth’s Rotation Using a Chip-Based Brillouin Laser Gyroscope
We report a chip-based Brillouin laser gyroscope with 0.068°/√ h angular random walk and 3.6°/h bias stability. The device can resolve sinusoidal rotations with amplitude as low as 5°/h and is also used to measure the Earth’s rotation
- …
