28 research outputs found
Determination of GABA, Glutamate and Choline in the Auditory Pathway of Animals with Tinnitus, Using High Resolution Proton Magnetic Resonance Spectroscopy (1H-MRS)
Gamma-aminobutyric acid and glutamic acid levels in the auditory pathway of rats with chronic tinnitus: A direct determination using high resolution point-resolved proton magnetic resonance spectroscopy (1H-MRS)
Damage to the auditory system following high-level sound exposure reduces afferent input. Homeostatic mechanisms appear to compensate for the loss. Overcompensation may produce the sensation of sound without an objective physical correlate, i.e., tinnitus. Several potential compensatory neural processes have been identified, such as increased spontaneous activity. The cellular mechanisms enabling such compensatory processes may involve down-regulation of inhibitory neurotransmission mediated by γ-amino butyric acid (GABA), and/or up-regulation of excitatory neurotransmission, mediated by glutamic acid (Glu). Because central processing systems are integrated and well regulated, compensatory changes in one system may produce reactive changes in others. Some or all may be relevant to tinnitus. To examine the roles of GABA and Glu in tinnitus, high-resolution point resolved proton magnetic-resonance spectroscopy (1H-MRS) was used to quantify their levels in the dorsal cochlear nucleus (DCN), inferior colliculus (IC), medial geniculate body( (MGB), and primary auditory cortex (A1) of rats. Chronic tinnitus was produced by a single high-level unilateral exposure to noise, and was measured using a psychophysical procedure sensitive to tinnitus. Decreased GABA levels were evident only in the MGB, with the greatest decrease, relative to unexposed controls, obtained in the contralateral MGB. Small GABA increases may have been present bilaterally in A1 and in the contralateral DCN. Although Glu levels showed considerable variation, Glu was moderately and bilaterally elevated both in the DCN and in A1. In the MGB Glu was increased ipsilaterally but decreased contralaterally. These bidirectional and region-specific alterations in GABA and Glu may reflect large-scale changes in inhibitory and excitatory equilibrium accompanying chronic tinnitus. The present results also suggest that targeting both neurotransmitter systems may be optimal in developing more effective therapeutics
Whole Body MRI and Fluorescent Microscopy for Detection of Stem Cells Labeled with Superparamagnetic Iron Oxide (SPIO) Nanoparticles and DiI Following Intramuscular and Systemic Delivery
Ratat1: A Digital Rat Brain Stereotaxic Atlas Derived from High-Resolution MRI Images Scanned in Three Dimensions
Quantitative assessment of atherosclerotic lesion of rabbit aorta by compressed slice analysis of magnetic resonance images ex vivo
Local NMDA receptor blockade attenuates chronic tinnitus and associated brain activity in an animal model.
Chronic tinnitus has no broadly effective treatment. Identification of specific markers for tinnitus should facilitate the development of effective therapeutics. Recently it was shown that glutamatergic blockade in the cerebellar paraflocculus, using an antagonist cocktail was successful in reducing chronic tinnitus. The present experiment examined the effect of selective N-methyl d-aspartate (NMDA) receptor blockade on tinnitus and associated spontaneous brain activity in a rat model. The NMDA antagonist, D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) (0.5 mM), was continuously infused for 2 weeks directly to the ipsilateral paraflocculus of rats with tinnitus induced months prior by unilateral noise exposure. Treated rats were compared to untreated normal controls without tinnitus, and to untreated positive controls with tinnitus. D-AP5 significantly decreased tinnitus within three days of beginning treatment, and continued to significantly reduce tinnitus throughout the course of treatment and for 23 days thereafter, at which time testing was halted. At the conclusion of psychophysical testing, neural activity was assessed using manganese enhanced magnetic resonance imaging (MEMRI). In agreement with previous research, untreated animals with chronic tinnitus showed significantly elevated bilateral activity in their paraflocculus and brainstem cochlear nuclei, but not in mid or forebrain structures. In contrast, D-AP5-treated-tinnitus animals showed significantly less bilateral parafloccular and dorsal cochlear nucleus activity, as well as significantly less contralateral ventral cochlear nucleus activity. It was concluded that NMDA-mediated glutamatergic transmission in the paraflocculus appears to be a necessary component of chronic noise-induced tinnitus in a rat model. Additionally, it was confirmed that in this model, elevated spontaneous activity in the cerebellar paraflocculus and auditory brainstem is associated with tinnitus
Ratat1: A Digital Rat Brain Stereotaxic Atlas Derived from High-Resolution MRI Images Scanned in Three Dimensions
RatAtlas 2.0_Locked.pdf
A
digital rat brain atlas, in PDF format, was derived from high-resolution <i>in situ</i> MRI images. The images depict
transverse, sagittal, and horizontal views in contiguous 0.2 mm slices, with a
planar resolution of 50 µm. Each slice was indexed to the skull surface as well
as the skull landmarks Bregma and Lambda. Using a common interactive file
format enables users to customize the images for their application, including
image reproduction with or without background or labels. The objective was to
provide a supplementary guide for stereotaxic neurosurgery that permits more
accurate visualization of targets and determination of target coordinates in
Long Evans rats
