1,478 research outputs found

    The Timing of Bid Placement and Extent of Multiple Bidding: An Empirical Investigation Using eBay Online Auctions

    Full text link
    Online auctions are fast gaining popularity in today's electronic commerce. Relative to offline auctions, there is a greater degree of multiple bidding and late bidding in online auctions, an empirical finding by some recent research. These two behaviors (multiple bidding and late bidding) are of ``strategic'' importance to online auctions and hence important to investigate. In this article we empirically measure the distribution of bid timings and the extent of multiple bidding in a large set of online auctions, using bidder experience as a mediating variable. We use data from the popular auction site \url{www.eBay.com} to investigate more than 10,000 auctions from 15 consumer product categories. We estimate the distribution of late bidding and multiple bidding, which allows us to place these product categories along a continuum of these metrics (the extent of late bidding and the extent of multiple bidding). Interestingly, the results of the analysis distinguish most of the product categories from one another with respect to these metrics, implying that product categories, after controlling for bidder experience, differ in the extent of multiple bidding and late bidding observed in them. We also find a nonmonotonic impact of bidder experience on the timing of bid placements. Experienced bidders are ``more'' active either toward the close of auction or toward the start of auction. The impact of experience on the extent of multiple bidding, though, is monotonic across the auction interval; more experienced bidders tend to indulge ``less'' in multiple bidding.Comment: Published at http://dx.doi.org/10.1214/088342306000000123 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Uptake of Ca2+ by isolated secretory vesicles from adrenal medulla

    Get PDF
    Intact secretory vesicles isolated from bovine adrenal medulla contain 94 nmol Na+ per mg of protein, and Ca2+ influx into the vesicles is inhibited by increasing concentrations of extravesicular Na+ (but not of K+, Li+ or choline+) or by addition of the Na+ ionophore monensin. Thus Ca2+ influx is determined by the Na+ gradient across the vesicular membrane. Half maximal inhibition of Ca2+ influx occurs with 34 mM Na+ extravesicularly. The fact that Ca2+ can also be released from the vesicles by inversion of the Na+ gradient provides direct evidence that an Na+-Ca2+ exchange may operate. According to an analysis of the inhibition of Ca2+ uptake by Na+ in a Hill plot 2 Na+ would be exchanged for 1 Ca2+. Ca2+ influx into the vesicles increases with temperature (energy of activation: 16 kcal/mol), can be observed already with 10−7 M free Ca2+ and increases up to 10−4 M Ca2+. Ca2+ influx is not affected by Mg2+ but Sr2+ is inhibitory. Since the process is only slightly influenced by the pH of the incubation medium and is insensitive to Mg2+-ATP or inhibitors of the proton translocating Mg2+-ATPase the electrochemical proton gradient across the vesicular membrane does not affect directly the Ca2+ influx into the secretory vesicles. Ca2+ uptake is insensitive to ruthenium red and oligomycin

    Primary Oral Myiasis: A Case Report

    Get PDF
    Myiasis commonly refers to invasion of live human or animal tissue by fly larvae of the Diptera order where they complete their cycle totally or in part, feeding on living or dead tissue, as well as on body fluids. Infestation of tissues of vertebrate species is pandemic but more frequently found in tropical and subtropical countries where poor hygiene, poor housing infrastructure, warm humid climate, and proximity with domestic animals prevail. Its diagnosis is made basically by the presence of larvae. The present paper reports a case of gingival myiasis involving 14–16 larvae in a 12-year-old boy

    Effects of Monovalent and Divalent Cations on Ca2+ Fluxes Across Chromaffin Secretory Membrane Vesicles

    Get PDF
    Abstract: Bovine chromaffin secretory vesicle ghosts loaded with Na+ were found to take up Ca2+ when incubated in K+ media or in sucrose media containing micromolar concentrations of free Ca2+. Li+- or choline+loaded ghosts did not take up Ca2+. The Ca2+ accumulated by Na+-loaded ghosts could be released by the Ca2+ ionophore A23187, but not by EGTA. Ca2+ uptake was inhibited by external Sr2+, Na +, Li +, or choline +. All the 45Ca2+ accumulated by Na+-dependent Ca2+ uptake could be released by external Na +, indicating that both Ca2+ influx and efflux occur in a Na+-dependent manner. Na + -dependent Ca2+ uptake and release were only slightly inhibited by Mg2+. In the presence of the Na+ ionophore Monensin the Ca2+ uptake by Na +-loaded ghosts was reduced. Ca2+ sequestered by the Na+-dependent mechanism could also be released by external Ca2+ or Sr2+ but not by Mg2+, indicating the presence of a Ca2+/Ca2+ exchange activity in secretory membrane vesicles. This Ca2+/Ca2+ exchange system is inhibited by Mg2+, but not by Sr2+. The Na + -dependent Ca2+ uptake system in the presence of Mg2+ is a saturable process with an apparent Km of 0.28 μM and a Vmax= 14.5 nmol min−1 mg protein−1. Ruthenium red inhibited neither the Na+/Ca2+ nor the Ca2+/Ca2+ exchange, even at high concentrations

    Ca2+ uptake to purified secretory vesicles from bovine neurohypophyses

    Get PDF
    Purified secretory vesicles isolated from bovine neurohypophyses were found to take up Ca2+ when incubated at 30°C in media containing 10−7 to 10−4 M free Ca2+. At 10−4 free Ca2+ 19 nmol/mg protein were taken up within 30 min. The initial uptake at this Ca2+ concentration was about 2 nmol/mg protein per min. The uptake of Ca2+ to secretory vesicles was not affected by ATP, oligomycin, ruthenium red, trifluoperazine, Mg2+ or K+, but was inhibited by Na+ and Sr2+. From these characteristics it can be concluded that the uptake system does not utilize directly ATP (as the Ca2+-ATPases known to be present in the cell membrane and the endoplasmic reticulum) and is different from the mitochondrial Ca2+ uptake system driven by respiration and/or ATP hydrolysis. However, Ca2+-Na+ exchange may well operate: In experiments using different concentrations of Na+ we found half-maximal inhibition of Ca2+ uptake with 33.3 mM Na+. An analysis of the data in a Hill plot indicated that at least 2 Na+ would be exchanged for 1 Ca2+. Also, it was found that Ca2+ previously taken up could be released again by external Na+ but not by K+
    corecore