99 research outputs found

    Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Get PDF
    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly

    Observations of Low and Intermediate Spectral Peak Blazars with the Imaging X-Ray Polarimetry Explorer

    Get PDF
    We present X-ray polarimetry observations from the Imaging X-ray Polarimetry Explorer (IXPE) of three low spectral peak and one intermediate spectral peak blazars, namely 3C 273, 3C 279, 3C 454.3, and S5 0716+714. For none of these objects was IXPE able to detect X-ray polarization at the 3σ level. However, we placed upper limits on the polarization degree at ∼10%-30%. The undetected polarizations favor models where the X-ray band is dominated by unpolarized photons upscattered by relativistic electrons in the jets of blazars, although hadronic models are not completely eliminated. We discuss the X-ray polarization upper limits in the context of our contemporaneous multiwavelength polarization campaigns

    Space Telescope and Optical Reverberation Mapping Project. IX. Velocity–Delay Maps for Broad Emission Lines in NGC 5548

    Get PDF
    In this contribution, we achieve the primary goal of the active galactic nucleus (AGN) STORM campaign by recovering velocity–delay maps for the prominent broad emission lines (Lyα, C iv, He ii, and Hβ) in the spectrum of NGC 5548. These are the most detailed velocity–delay maps ever obtained for an AGN, providing unprecedented information on the geometry, ionization structure, and kinematics of the broad-line region. Virial envelopes enclosing the emission-line responses show that the reverberating gas is bound to the black hole. A stratified ionization structure is evident. The He ii response inside 5–10 lt-day has a broad single-peaked velocity profile. The Lyα, C iv, and Hβ responses extend from inside 2 to outside 20 lt-day, with double peaks at ±2500 km s−1 in the 10–20 lt-day delay range. An incomplete ellipse in the velocity–delay plane is evident in Hβ. We interpret the maps in terms of a Keplerian disk with a well-defined outer rim at R = 20 lt-day. The far-side response is weaker than that from the near side. The line-center delay τ=(R/c)(1sini)5\tau =(R/c)(1-\sin i)\approx 5 days gives the inclination i ≈ 45°. The inferred black hole mass is MBH ≈ 7 × 107 M⊙. In addition to reverberations, the fit residuals confirm that emission-line fluxes are depressed during the "BLR Holiday" identified in previous work. Moreover, a helical "Barber-Pole" pattern, with stripes moving from red to blue across the C iv and Lyα line profiles, suggests azimuthal structure rotating with a 2 yr period that may represent precession or orbital motion of inner-disk structures casting shadows on the emission-line region farther out

    IXPE Observations of the Blazar Mrk 501 in 2022: A Multiwavelength View

    Get PDF
    The blazar Markarian 501 (Mrk 501) was observed on three occasions over a 4-month period between 2022 March and 2022 July with the Imaging X-ray Polarimetry Explorer (IXPE). In this paper, we report for the first time on the third IXPE observation, performed between 2022 July 9 and 12, during which IXPE detected a linear polarization degree of ΠX = 6 ± 2 per cent at a polarization angle, measured east of north, of ΨX = 143○ ± 11○ within the 2 – 8 keV X-ray band. The X-ray polarization angle and degree during this observation are consistent with those obtained during the first two observations. The chromaticity of the polarization across radio, optical, and X-ray bands is likewise consistent with the result from the simultaneous campaigns during the first two observations. Furthermore, we present two types of models to explain the observed spectral energy distributions (SEDs) and energy-resolved polarization: a synchrotron self-Compton model with an anisotropic magnetic field probability distribution in the emitting volume, as well as an energy-stratified shock model. Our results support both the shock scenario as well as support that small levels of magnetic field anisotropy can explain the observed polarization

    The complex variability of blazars: time-scales and periodicity analysis in S4 0954+65

    Get PDF
    Among active galactic nuclei, blazars show extreme variability properties. We here investigate the case of the BL Lac object S4 0954+65 with data acquired in 2019-2020 by the Transiting Exoplanet Survey Satellite (TESS) and by the Whole Earth Blazar Telescope (WEBT) Collaboration. The 2-min cadence optical light curves provided by TESS during three observing sectors of nearly 1 month each allow us to study the fast variability in great detail. We identify several characteristic short-term time-scales, ranging from a few hours to a few days. However, these are not persistent, as they differ in the various TESS sectors. The long-term photometric and polarimetric optical and radio monitoring undertaken by the WEBT brings significant additional information, revealing that (i) in the optical, long-term flux changes are almost achromatic, while the short-term ones are strongly chromatic; (ii) the radio flux variations at 37 GHz follow those in the optical with a delay of about 3 weeks; (iii) the range of variation of the polarization degree and angle is much larger in the optical than in the radio band, but the mean polarization angles are similar; (iv) the optical long-term variability is characterized by a quasi-periodicity of about 1 month. We explain the source behaviour in terms of a rotating inhomogeneous helical jet, whose pitch angle can change in time

    High Optical-to-X-Ray Polarization Ratio Reveals Compton Scattering in BL Lacertae’s Jet

    Get PDF
    Blazars, supermassive black hole systems with highly relativistic jets aligned with the line of sight, are the most powerful long-lived emitters of electromagnetic emission in the Universe. We report here on a radio-to-gamma-ray multiwavelength campaign on the blazar BL Lacertae with unprecedented polarimetric coverage from radio to X-ray wavelengths. The observations caught an extraordinary event on 2023 November 10–18, when the degree of linear polarization of optical synchrotron radiation reached a record value of 47.5%. In stark contrast, the Imaging X-ray Polarimetry Explorer found that the X-ray (Compton scattering or hadron-induced) emission was polarized at less than 7.4% (3σ confidence level). We argue here that this observational result rules out a hadronic origin of the high-energy emission and strongly favors a leptonic (Compton scattering) origin, thereby breaking the degeneracy between hadronic and leptonic emission models for BL Lacertae and demonstrating the power of multiwavelength polarimetry to address this question. Furthermore, the multiwavelength flux and polarization variability, featuring an extremely prominent rise and decay of the optical polarization degree, is interpreted for the first time by the relaxation of a magnetic “spring” embedded in the newly injected plasma. This suggests that the plasma jet can maintain a predominant toroidal magnetic field component parsecs away from the central engine

    Multiwavelength observations of a VHE gamma-ray flare from PKS 1510-089 in 2015

    Get PDF
    Context. PKS 1510 089 is one of only a few flat spectrum radio quasars detected in the very-high-energy (VHE, > 100 GeV) gamma-ray band.Aims. We study the broadband spectral and temporal properties of the PKS 1510 089 emission during a high gamma-ray state.Methods. We performed VHE gamma-ray observations of PKS 1510 089 with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes during a long, high gamma-ray state in May 2015. In order to perform broadband modeling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray, and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state.Results. PKS 1510 089 was detected by MAGIC during a few day-long observations performed in the middle of a long, high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. However, owing to large uncertainty on the knot separation time, the association with the VHE gamma-ray emission cannot be firmly established. The spectral shape in the VHE band during the flare is similar to those obtained during previous measurements of the source. The observed flux variability sets constraints for the first time on the size of the region from which VHE gamma rays are emitted. We model the broadband SED in the framework of the external Compton scenario and discuss the possible emission site in view of multiwavelength data and alternative emission models

    Multi-wavelength characterization of the blazar S5~0716+714 during an unprecedented outburst phase

    Get PDF
    The BL Lac object S5~0716+714, a highly variable blazar, underwent an impressive outburst in January 2015 (Phase A), followed by minor activity in February (Phase B). The MAGIC observations were triggered by the optical flux observed in Phase A, corresponding to the brightest ever reported state of the source in the R-band. The comprehensive dataset collected is investigated in order to shed light on the mechanism of the broadband emission. Multi-wavelength light curves have been studied together with the broadband Spectral Energy Distributions (SEDs). The data set collected spans from radio, optical photometry and polarimetry, X-ray, high-energy (HE, 0.1 GeV 100 GeV) with MAGIC. The flaring state of Phase A was detected in all the energy bands, providing for the first time a multi-wavelength sample of simultaneous data from the radio band to the VHE. In the constructed SED the \textit{Swift}-XRT+\textit{NuSTAR} data constrain the transition between the synchrotron and inverse Compton components very accurately, while the second peak is constrained from 0.1~GeV to 600~GeV by \textit{Fermi}+MAGIC data. The broadband SED cannot be described with a one-zone synchrotron self-Compton model as it severely underestimates the optical flux in order to reproduce the X-ray to γ\gamma-ray data. Instead we use a two-zone model. The EVPA shows an unprecedented fast rotation. An estimation of the redshift of the source by combined HE and VHE data provides a value of z=0.31±0.02stats±0.05sysz = 0.31 \pm 0.02_{stats} \pm 0.05_{sys}, confirming the literature value. The data show the VHE emission originating in the entrance and exit of a superluminal knot in and out a recollimation shock in the inner jet. A shock-shock interaction in the jet seems responsible for the observed flares and EVPA swing. This scenario is also consistent with the SED modelling

    近世の流通システムと産業組織:宿駅と酒造業の経済的機能に関する考察

    Get PDF
    corecore