21 research outputs found
The hope and reality of long‐acting hemophilia products
Recombinant DNA technology and protein engineering are creating hope that we can address ongoing challenges in hemophilia care such as reducing the costs of therapy, increasing the availability to the developing world, and improving the functional properties of these proteins. Technological advances to improve the half‐life of recombinant clotting factors have brought long‐acting clotting factors for hemophilia replacement therapy closer to reality. Preclinical and clinical trial results are reviewed as well as the potential benefits and risks of these novel therapies. Am. J. Hematol. 2012. © 2012 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91179/1/23146_ftp.pd
Mice have a transcribed L-threonine aldolase/GLY1 gene, but the human GLY1 gene is a non-processed pseudogene
BACKGROUND: There are three pathways of L-threonine catabolism. The enzyme L-threonine aldolase (TA) has been shown to catalyse the conversion of L-threonine to yield glycine and acetaldehyde in bacteria, fungi and plants. Low levels of TA enzymatic activity have been found in vertebrates. It has been suggested that any detectable activity is due to serine hydroxymethyltransferase and that mammals lack a genuine threonine aldolase. RESULTS: The 7-exon murine L-threonine aldolase gene (GLY1) is located on chromosome 11, spanning 5.6 kb. The cDNA encodes a 400-residue protein. The protein has 81% similarity with the bacterium Thermotoga maritima TA. Almost all known functional residues are conserved between the two proteins including Lys242 that forms a Schiff-base with the cofactor, pyridoxal-5'-phosphate. The human TA gene is located at 17q25. It contains two single nucleotide deletions, in exons 4 and 7, which cause frame-shifts and a premature in-frame stop codon towards the carboxy-terminal. Expression of human TA mRNA was undetectable by RT-PCR. In mice, TA mRNA was found at low levels in a range of adult tissues, being highest in prostate, heart and liver. In contrast, serine/threonine dehydratase, another enzyme that catabolises L-threonine, is expressed very highly only in the liver. Serine dehydratase-like 1, also was most abundant in the liver. In whole mouse embryos TA mRNA expression was low prior to E-15 increasing more than four-fold by E-17. CONCLUSION: Mice, the western-clawed frog and the zebrafish have transcribed threonine aldolase/GLY1 genes, but the human homolog is a non-transcribed pseudogene. Serine dehydratase-like 1 is a putative L-threonine catabolising enzyme
Stitching together Multiple Data Dimensions Reveals Interacting Metabolomic and Transcriptomic Networks That Modulate Cell Regulation
DNA variation can be used as a systematic source of perturbation in segregating populations as a way to infer regulatory networks via the integration of large-scale, high-dimensional molecular profiling data
Serine and threonine catabolism in Saccharomyces cerevisiae: the CHA1 polypeptide is homologous with other serine and threonine dehydratases.
Abstract
The catabolic L-serine (L-threonine) dehydratase of Saccharomyces cerevisiae allows the yeast to grow on media with L-serine or L-threonine as sole nitrogen source. Previously we have cloned the CHA1 gene by complementation of a mutant, cha1, lacking the dehydratase activity. Here we present the DNA sequence of a 1,766-bp fragment of the CHA1 region encompassing an open reading frame of 1080 bp. Comparison of the predicted amino acid sequence of the CHA1 polypeptide with that of other serine/threonine dehydratases revealed several blocks of sequence homology. Thus, the amino acid sequence of rat liver serine dehydratase (SDH2) and the CHA1 polypeptide are 44% homologous allowing for conservative substitutions, while 36% similarity is found between the catabolic threonine dehydratase (tdcB) of Escherichia coli and the CHA1 protein. This strongly suggests that CHA1 is the structural gene for the yeast catabolic serine (threonine) dehydratase. S1-nuclease mapping of the CHA1 mRNA ends showed a major transcription initiation site corresponding to an untranslated leader of about 19 nucleotides, while a major polyadenylation site was located about 86 nucleotides downstream from the open reading frame. Furthermore, we have mapped the chromosomal position of the CHA1 gene to less than 0.5 kb centromere proximal to HML on the left arm of chromosome III.</jats:p
Serine and Threonine Catabolism in Saccharomyces Cerevisiae: The Cha1 Polypeptide Is Homologous with Other Serine and Threonine Dehydratases
The catabolic L-serine (L-threonine) dehydratase of Saccharomyces cerevisiae allows the yeast to grow on media with L-serine or L-threonine as sole nitrogen source. Previously we have cloned the CHA1 gene by complementation of a mutant, cha1, lacking the dehydratase activity. Here we present the DNA sequence of a 1,766-bp fragment of the CHA1 region encompassing an open reading frame of 1080 bp. Comparison of the predicted amino acid sequence of the CHA1 polypeptide with that of other serine/threonine dehydratases revealed several blocks of sequence homology. Thus, the amino acid sequence of rat liver serine dehydratase (SDH2) and the CHA1 polypeptide are 44% homologous allowing for conservative substitutions, while 36% similarity is found between the catabolic threonine dehydratase (tdcB) of Escherichia coli and the CHA1 protein. This strongly suggests that CHA1 is the structural gene for the yeast catabolic serine (threonine) dehydratase. S1-nuclease mapping of the CHA1 mRNA ends showed a major transcription initiation site corresponding to an untranslated leader of about 19 nucleotides, while a major polyadenylation site was located about 86 nucleotides downstream from the open reading frame. Furthermore, we have mapped the chromosomal position of the CHA1 gene to less than 0.5 kb centromere proximal to HML on the left arm of chromosome III
A regulatory element in the CHA1 promoter which confers inducibility by serine and threonine on Saccharomyces cerevisiae genes.
CHA1 of Saccharomyces cerevisiae is the gene for the catabolic L-serine (L-threonine) dehydratase, which is responsible for biodegradation of serine and threonine. We have previously shown that expression of the CHA1 gene is transcriptionally induced by serine and threonine. Northern (RNA) analysis showed that the additional presence of good nitrogen sources affects induction. This may well be due to inducer exclusion. To identify interactions of cis-acting elements with trans activators of the CHA1 promoter, we performed band shift assays of nuclear protein extracts with CHA1 promoter fragments. By this approach, we identified a protein-binding site of the CHA1 promoter. The footprint of this protein contains the ABF1-binding site consensus sequence. This in vitro binding activity is present irrespectively of CHA1 induction. By deletion analysis, two other elements of the CHA1 promoter, UAS1CHA and UAS2CHA, which are needed for induction of the CHA1 gene were identified. Each of the two sequence elements is sufficient to confer serine and threonine induction upon the CYC1 promoter when substituting its upstream activating sequence. Further, in a cha4 mutant strain which is unable to grow with serine or threonine as the sole nitrogen source, the function of UAS1CHA, as well as that of UAS2CHA, is obstructed
Molecular genetics of serine and threonine catabolism in Saccharomyces cerevisiae.
Abstract
The catabolic L-serine (L-threonine) deaminase of Saccharomyces cerevisiae allows the yeast to grow on media with L-serine or L-threonine as sole nitrogen source. A mutant, cha1 (catabolism of hydroxyamino acids), lacking this enzyme activity has been isolated. We have cloned the CHA1 gene by complementation of a cha1 mutation. Northern analysis showed that CHA1 mRNA has a size of about 1200 ribonucleotides. CHA1 is probably the structural gene for the enzyme; it is an abundant RNA in cells grown with serine and threonine as nitrogen source, whereas it is not detected when cells are grown on ammonium or proline, i.e., the transcription of the CHA1 gene is induced by serine or threonine. Under induced growth conditions haploid ilv1 CHA1 strains do not require isoleucine, i.e., the catabolic deaminase is able to substitute for the biosynthetic threnonine deaminase encoded by the ILV1 gene. We have identified a nuclear, recessive mutation, sil1, that suppresses ilv1 mutations by increased transcription of the CHA1 gene under growth conditions leading to partial induction. The sil1 mutation could exert its effect by increasing the effective pools of the hydroxyamino acids. Alternatively SIL1 may encode a negatively acting regulatory protein for CHA1.</jats:p
