2,508 research outputs found

    Bandwidth-Limited Control and Ringdown Suppression in High-Q Resonators

    Full text link
    We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity.Comment: 20 pages, 5 figures; Replaced with version accepted for publication and added journal referenc

    PRISE2: software for designing sequence-selective PCR primers and probes.

    Get PDF
    BackgroundPRISE2 is a new software tool for designing sequence-selective PCR primers and probes. To achieve high level of selectivity, PRISE2 allows the user to specify a collection of target sequences that the primers are supposed to amplify, as well as non-target sequences that should not be amplified. The program emphasizes primer selectivity on the 3' end, which is crucial for selective amplification of conserved sequences such as rRNA genes. In PRISE2, users can specify desired properties of primers, including length, GC content, and others. They can interactively manipulate the list of candidate primers, to choose primer pairs that are best suited for their needs. A similar process is used to add probes to selected primer pairs. More advanced features include, for example, the capability to define a custom mismatch penalty function. PRISE2 is equipped with a graphical, user-friendly interface, and it runs on Windows, Macintosh or Linux machines.ResultsPRISE2 has been tested on two very similar strains of the fungus Dactylella oviparasitica, and it was able to create highly selective primers and probes for each of them, demonstrating the ability to create useful sequence-selective assays.ConclusionsPRISE2 is a user-friendly, interactive software package that can be used to design high-quality selective primers for PCR experiments. In addition to choosing primers, users have an option to add a probe to any selected primer pair, enabling design of Taqman and other primer-probe based assays. PRISE2 can also be used to design probes for FISH and other hybridization-based assays

    Coping With Statistics -- A Primer for Librarians and Trustees

    Get PDF
    These are times of tighter budgets — for governments, industry, and individuals. Consequently, many people are questioning whether they are “getting their money’s worth” from various tax supported entities, including libraries. Statistics are being increasingly used to attempt to prove or disprove the value of libraries

    Parallel Information Transfer in a Multi-Node Quantum Information Processor

    Full text link
    We describe a method for coupling disjoint quantum bits (qubits) in different local processing nodes of a distributed node quantum information processor. An effective channel for information transfer between nodes is obtained by moving the system into an interaction frame where all pairs of cross-node qubits are effectively coupled via an exchange interaction between actuator elements of each node. All control is achieved via actuator-only modulation, leading to fast implementations of a universal set of internode quantum gates. The method is expected to be nearly independent of actuator decoherence and may be made insensitive to experimental variations of system parameters by appropriate design of control sequences. We show, in particular, how the induced cross-node coupling channel may be used to swap the complete quantum states of the local processors in parallel.Comment: revtex4-1; 7 pages; 5 figures. New version includes minor changes, with updated Fig. 4 and new supplemental materia

    Cavity cooling of an ensemble spin system

    Full text link
    We describe how sideband cooling techniques may be applied to large spin ensembles in magnetic resonance. Using the Tavis-Cummings model in the presence of a Rabi drive, we solve a Markovian master equation describing the joint spin-cavity dynamics to derive cooling rates as a function of ensemble size. Our calculations indicate that the coupled angular momentum subspaces of a spin ensemble containing roughly 101110^{11} electron spins may be polarized in a time many orders of magnitude shorter than the typical thermal relaxation time. The described techniques should permit efficient removal of entropy for spin-based quantum information processors and fast polarization of spin samples. The proposed application of a standard technique in quantum optics to magnetic resonance also serves to reinforce the connection between the two fields, which has recently begun to be explored in further detail due to the development of hybrid designs for manufacturing noise-resilient quantum devices.Comment: 14 pages + 5 figure

    Characterization of polyacrylonitrile ultrafiltration membranes

    Get PDF
    Various methods have been used to characterize ultrafiltration membranes, such as gas flux measurements, (field emission) scanning electron microscopy, permporometry and liquid-liquid displacement. Significant differences in the pore size distributions determined from permporometry and liquid-liquid displacement were found
    corecore