385 research outputs found
The relation between stellar magnetic field geometry and chromospheric activity cycles - I. The highly variable field of ɛ Eridani at activity minimum
The young and magnetically active K dwarf Epsilon Eridani exhibits a chromospheric activity cycle of about 3 years. Previous reconstructions of its large-scale magnetic field show strong variations at yearly epochs. To understand how Epsilon Eridani's large-scale magnetic field geometry evolves over its activity cycle we focus on high cadence observations spanning 5 months at its activity minimum. Over this timespan we reconstruct 3 maps of Epsilon Eridani's large-scale magnetic field using the tomographic technique of Zeeman Doppler Imaging. The results show that at the minimum of its cycle, Epsilon Eridani's large-scale field is more complex than the simple dipolar structure of the Sun and 61 Cyg A at minimum. Additionally we observe a surprisingly rapid regeneration of a strong axisymmetric toroidal field as Epsilon Eridani emerges from its S-index activity minimum. Our results show that all stars do not exhibit the same field geometry as the Sun and this will be an important constraint for the dynamo models of active solar-type stars
Hubungan Peran Patugas dan Pengalaman Kb dengan Pergantian Metode Kb di Kecamatan Tembalang Kota Semarang Triwulan II Tahun 2016
In Jawa Tengah, 2015 there are 48.541 acceptors who have changed their FP method. Most of them subtitute to injectable FP method. In Semarang, there are 1.333 acceptors have changed their FP method, most of them substitute to injectable FP method. In District Tembalang recorded 75 acceptors have changed its method of family planning from the period 2013-2015. Preliminary study on the 10 acceptors turnover of family planning methods known that 7 of them substitute FP methods from LTM to non-LTM with the biggest reason is because of side effects which is menstrual disordes (100%), change in body weight (80%), bleeding disorder (40%), and whitish (20%). The purpose of this study is to analyze the role of family planning officers and planning experience with the change of family planning methods in District Tembalang, Semarang. This type of research is explanatory research with cross sectional study design. The population in this study are all acceptors turnover family planning methods are recorded in primary health centers Rowosari and Kedungmundu and the sample is total population of 56 people. Analysis of the data used univariate analysis with frequency distribution and bivariate analysis using Chi Square test with significancy level (α) of 5%. The results showed that the largest percentage of the lack of family planning officer role (51.8%), there are experiences KB themselves (69.6%), and there are not experience of others (80.4%). The results of analysis of Chi Square, there is no relationship role for FP officer with the replacement of family planning methods (p value: 0.636), there is no relationship experiences FP others with the replacement of family planning methods (p value: 0,761). It is advisable for family planning officials to explain about family planning methods with more deeply
The relation between stellar magnetic field geometry and chromospheric activity cycles – II The rapid 120-day magnetic cycle of <i>τ</i> Bootis
One of the aims of the BCool programme is to search for cycles in other stars and to understand how similar they are to the Sun. In this paper, we aim to monitor the evolution of τ Boo’s large-scale magnetic field using high-cadence observations covering its chromospheric activity maximum. For the first time, we detect a polarity switch that is in phase with τ Boo’s 120-day chromospheric activity maximum and its inferred X-ray activity cycle maximum. This means that τ Boo has a very fast magnetic cycle of only 240 days. At activity maximum τ Boo’s large-scale field geometry is very similar to the Sun at activity maximum: it is complex and there is a weak dipolar component. In contrast, we also see the emergence of a strong toroidal component which has not been observed on the Sun, and a potentially overlapping butterfly pattern where the next cycle begins before the previous one has finished
Development of Grid e-Infrastructure in South-Eastern Europe
Over the period of 6 years and three phases, the SEE-GRID programme has
established a strong regional human network in the area of distributed
scientific computing and has set up a powerful regional Grid infrastructure. It
attracted a number of user communities and applications from diverse fields
from countries throughout the South-Eastern Europe. From the infrastructure
point view, the first project phase has established a pilot Grid infrastructure
with more than 20 resource centers in 11 countries. During the subsequent two
phases of the project, the infrastructure has grown to currently 55 resource
centers with more than 6600 CPUs and 750 TBs of disk storage, distributed in 16
participating countries. Inclusion of new resource centers to the existing
infrastructure, as well as a support to new user communities, has demanded
setup of regionally distributed core services, development of new monitoring
and operational tools, and close collaboration of all partner institution in
managing such a complex infrastructure. In this paper we give an overview of
the development and current status of SEE-GRID regional infrastructure and
describe its transition to the NGI-based Grid model in EGI, with the strong SEE
regional collaboration.Comment: 22 pages, 12 figures, 4 table
The connection between stellar activity cycles and magnetic field topology
Zeeman–Doppler imaging (ZDI) has successfully mapped the large-scale magnetic fields of stars over a large range of spectral types, rotation periods and ages. When observed over multiple epochs, some stars show polarity reversals in their global magnetic fields. On the Sun, polarity reversals are a feature of its activity cycle. In this paper, we examine the magnetic properties of stars with existing chromospherically determined cycle periods. Previous authors have suggested that cycle periods lie on multiple branches, either in the cycle period–Rossby number plane or the cycle period–rotation period plane. We find some evidence that stars along the active branch show significant average toroidal fields that exhibit large temporal variations while stars exclusively on the inactive branch remain dominantly poloidal throughout their entire cycle. This lends credence to the idea that different shear layers are in operation along each branch. There is also evidence that the short magnetic polarity switches observed on some stars are characteristic of the inactive branch while the longer chromospherically determined periods are characteristic of the active branch. This may explain the discrepancy between the magnetic and chromospheric cycle periods found on some stars. These results represent a first attempt at linking global magnetic field properties obtained from ZDI and activity cycles.Publisher PDFPeer reviewe
Stellar Coronal and Wind Models: Impact on Exoplanets
Surface magnetism is believed to be the main driver of coronal heating and
stellar wind acceleration. Coronae are believed to be formed by plasma confined
in closed magnetic coronal loops of the stars, with winds mainly originating in
open magnetic field line regions. In this Chapter, we review some basic
properties of stellar coronae and winds and present some existing models. In
the last part of this Chapter, we discuss the effects of coronal winds on
exoplanets.Comment: Chapter published in the "Handbook of Exoplanets", Editors in Chief:
Juan Antonio Belmonte and Hans Deeg, Section Editor: Nuccio Lanza. Springer
Reference Work
Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family
Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al
[2,6-Bis(di-tert-butylphosphinomethyl)phenyl-κ3 P,C 1,P′](nitrato-κO)nickel(II)
The NiII atom in the title compound, [Ni(C24H43P2)(NO3)], adopts a distorted square-planar geometry with the P atoms in a trans arrangement. The compound contains a twofold rotational axis with the nitrate group offset from this axis, except for an O atom of the nitrate group, generating two positions of 50% occupancy for the other atoms of the nitrate group
- …
