237 research outputs found

    LRP5 negatively regulates differentiation of monocytes through abrogation of Wnt signalling

    Get PDF
    Molecular changes involved in cell differentiation are only partially known. Circulating inflammatory cells need to differentiate to perform specialized functions in target tissues. Here, we hypothesized that low-density lipoprotein receptor-related protein 5 (LRP5) is involved, through its participation in the canonical Wnt/β-catenin signalling, in the differentiation process of monocytic cells. To this aim, we characterized differentiation mechanisms of HL60 cells and primary human monocytes. We show that silencing the LRP5 gene increased differentiation of HL60 cells and human monocytes, suggesting that LRP5 signalling abrogates differentiation. We demonstrate that the mechanisms behind this blockade include sequestration of β-catenin at the cellular membrane, inhibition of the Wnt signalling and increase of apoptosis. We further demonstrate the involvement of LRP5 and the Wnt/β-catenin signalling in the process because cellular differentiation can be rescued by the addition of downstream Wnt target genes to the monocytic cells. © 2013 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine

    LRP5 deficiency down-regulates Wnt signalling and promotes aortic lipid infiltration in hypercholesterolaemic mice

    Get PDF
    Low-density lipoprotein receptor-related protein 5 (LRP5) is a member of the LDLR family that orchestrates cholesterol homoeostasis. The role of LRP5 and the canonical Wnt pathway in the vascular wall of dyslipidaemic animals remains unknown. In this study, we analysed the role of LRP5 and the Wnt signalling pathway in mice fed a hypercholesterolaemic diet (HC) to trigger dyslipidaemia. We show that Lrp5 mice had larger aortic lipid infiltrations than wild-type mice, indicating a protective role for LRP5 in the vascular wall. Three members of the LDLR family, Lrp1, Vldlr and Lrp6, showed up-regulated gene expression levels in aortas of Lrp5 mice fed a hypercholesterolaemic diet. HC feeding in Lrp5 mice induced higher macrophage infiltration in the aortas and accumulation of inflammatory cytokines in blood. Wnt/β-CATENIN signalling proteins were down-regulated in HC Lrp5 mice indicating that LRP5 regulates the activation of Wnt signalling in the vascular wall. In conclusion, our findings show that LRP5 and the canonical Wnt pathway down-regulation regulate the dyslipidaemic profile by promoting lipid and macrophage retention in the vessel wall and increasing leucocyte-driven systemic inflammation

    Apolipoprotein E related Co-Morbidities and Alzheimer’s disease

    Get PDF
    The primary goal of advancement in clinical services is to provide a health care system that enhances an individual’s quality of life. Incidence of diabetes mellitus, cardiovascular disease and associated dementia coupled with the advancing age of the population, have led to an increase in the worldwide challenge to the healthcare system. In order to overcome these challenges prior knowledge of common, reliable risk factors and their effectors is essential. The oral health constitutes one such relatively unexplored but indispensable risk factor for aforementioned co-morbidities, in the form of poor oral hygiene and tooth loss during aging. Behavioural traits such as low education, smoking, poor diet, neglect of oral health, lack of exercise, and hypertension are few of the risk factors that are shared commonly amongst these conditions. In addition, common genetic susceptibility traits such as the apolipoprotein ɛ gene, together with an individual’s life style can also influence the development of co-morbidities such as periodontitis, atherosclerosis/stroke, diabetes, and Alzheimer’s disease. This review specifically addresses the susceptibility of apolipoprotein ε gene allele 4 as the plausible commonality for the etiology of co-morbidities that eventually result from periodontal diseases and ultimately progress to dementia

    Microvesicles carrying LRP5 induce macrophage polarization to an anti-inflammatory phenotype

    Get PDF
    Altres ajuts: Fundación Investigación Cardiovascular-Fundación Jesus SerraAltres ajuts: Sociedad Española de Cardiología FEC2019Microvesicles (MV) contribute to cell-to-cell communication through their transported proteins and nucleic acids. MV, released into the extracellular space, exert paracrine regulation by modulating cellular responses after interaction with near and far target cells. MV are released at high concentrations by activated inflammatory cells. Different subtypes of human macrophages have been characterized based on surface epitopes being CD16 macrophages associated with anti-inflammatory phenotypes. We have previously shown that low-density lipoprotein receptor-related protein 5 (LRP5), a member of the LDLR family that participates in lipid homeostasis, is expressed in macrophage CD16 with repair and survival functions. The goal of our study was to characterize the cargo and tentative function of macrophage-derived MV, whether LRP5 is delivered into MV and whether these MV are able to induce inflammatory cell differentiation to a specific CD16 or CD16 phenotype. We show, for the first time, that lipid-loaded macrophages release MV containing LRP5. LDL loading induces increased expression of macrophage pro-inflammatory markers and increased release of MV containing pro-inflammatory markers. Conditioning of fresh macrophages with MV released by Lrp5-silenced macrophages induced the transcription of inflammatory genes and reduced the transcription of anti-inflammatory genes. Thus, MV containing LRP5 induce anti-inflammatory phenotypes in macrophages

    GSK3β inhibition and canonical Wnt signaling in mice hearts after myocardial ischemic damage

    Get PDF
    Altres ajuts: This work was supported by the Ministerio de Ciencia e Innovación (to LB); the Instituto de Salud Carlos III (to LB and to MBP); the Generalitat of Catalunya-Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat (to LB); the Fundacion Investigación Cardiovascular to LB, and the Spanish Society of Cardiology (SEC2015 to MBP).Aims Myocardial infarction induces myocardial injury and tissue damage. During myocardial infarction strong cellular response is initiated to salvage the damaged tissues. This response is associated with the induction of different signaling pathways. Of these, the canonical Wnt signaling is increasingly important for its prosurvival cellular role, making it a good candidate for the search of new molecular targets to develop therapies to prevent heart failure in infarcted patients. Methods Herein we report that GSK3β regulates the canonical Wnt signaling in C57Bl6 mice hearts. GSK3β is a canonical Wnt pathway inhibitor. Using GSK3β inhibitors and inducing myocardial injury (MI) in Lrp5 mice model we show that GSK3β phosphorylation levels regulate downstream canonical Wnt pathway genes in the ischemic heart. In the setting of MI, myocardial damage assessment usually correlates with functional and clinical outcomes. Therefore, we measured myocardial injury size in Wt and Lrp5 mice in the presence and absence of two different GSK3 inhibitors prior to MI. Myocardial injury was independent of GSK3 inhibitor treatments and GSK3β expression levels. Results These studies support a central role for GSK3β in the activation of the canonical Wnt pathway in the Wt heart. Although LRP5 is protective against myocardial injury, GSK3β expression levels do not regulate heart damage

    Nintedanib Reduces Muscle Fibrosis and Improves Muscle Function of the Alpha-Sarcoglycan-Deficient Mice

    Get PDF
    Sarcoglycanopathies are a group of recessive limb-girdle muscular dystrophies, characterized by progressive muscle weakness. Sarcoglycan deficiency produces instability of the sarcolemma during muscle contraction, leading to continuous muscle fiber injury eventually producing fiber loss and replacement by fibro-adipose tissue. Therapeutic strategies aiming to reduce fibro-adipose expansion could be effective in muscular dystrophies. We report the positive effect of nintedanib in a murine model of alpha-sarcoglycanopathy. We treated 14 Sgca mice, six weeks old, with nintedanib 50 mg/kg every 12 h for 10 weeks and compared muscle function and histology with 14 Sgca mice treated with vehicle and six wild-type littermate mice. Muscle function was assessed using a treadmill and grip strength. A cardiac evaluation was performed by echocardiography and histological study. Structural analysis of the muscles, including a detailed study of the fibrotic and inflammatory processes, was performed using conventional staining and immunofluorescence. In addition, proteomics and transcriptomics studies were carried out. Nintedanib was well tolerated by the animals treated, although we observed weight loss. Sgca mice treated with nintedanib covered a longer distance on the treadmill, compared with non-treated Sgca mice, and showed higher strength in the grip test. Moreover, nintedanib improved the muscle architecture of treated mice, reducing the degenerative area and the fibrotic reaction that was associated with a reversion of the cytokine expression profile. Nintedanib improved muscle function and muscle architecture by reducing muscle fibrosis and degeneration and reverting the chronic inflammatory environment suggesting that it could be a useful therapy for patients with alpha-sarcoglycanopathy

    Nuevas estrategias terapéuticas basadas en el papel pro-aterogénico del LRP1

    Get PDF
    Trabajo presentado en el XXXIV Congreso de la Sociedad Española de Arteriosclerosis, celebrado en Madrid (España), del 8 al 10 de junio de 2022Background: The LRP1 (CR9) domain and, in particular, the sequence Gly1127-Cys1140 (P3) plays a critical role in the binding and internalization of aggregated LDL (agLDL). We aimed to evaluate whether immunization with P3 reduces high-fat diet (HFD)-induced atherosclerosis. Methods: Female New Zealand White (NZW) rabbits were immunized with a primary injection and four reminder doses (R1-R4) of IrP (irrelevant peptide) or P3 conjugated to the carrier. IrP and P3-immunized rabbits were randomly divided into a normal diet group and a HFD-fed group. Anti-P3 antibody levels were determined by ELISA. Lipoprotein profile, circulating and tissue lipids, and vascular pro-inflammatory mediators were determined using standardized methods while atherosclerosis was determined by confocal microscopy studies and non-invasive imaging (PET/CT and Doppler ultrasonography). Studies treating human macrophages (hM¿) and coronary vascular smooth muscle cells (hcVSMC) with rabbit serums were performed to ascertain the potential impact of anti-P3 Abs on the functionality of these crucial cells. Results: P3 immunization specifically induced the production of anti-P3 antibodies (Abs) and did not alter the lipoprotein profile. HFD strongly induced cholesteryl ester (CE) accumulation in the aorta of both the control and IrP groups, and their serum dose-dependently raised the intracellular CE of hM¿ and hcVSMC, promoting TNFR1 and phospho-NF-kB (p65) overexpression. These HFD pro-inflammatory effects were dramatically decreased in the aorta of P3-immunized rabbits and in hM¿ and hcVSMC exposed to the P3 rabbit serums. Microscopy studies revealed that P3 immunization reduced the percentage of lipids, macrophages, and SMCs in the arterial intima, as well as the atherosclerotic extent and lesion area in the aorta. PET/CT and Doppler ultrasonography studies showed that the average standardized uptake value (SUVmean) of the aorta and the arterial resistance index (ARI) of the carotids were more upregulated by HFD in the control and IrP groups than the P3 group. Conclusions: P3 immunization counteracts HFD-induced fatty streak formation in rabbits. The specific blockade of the LRP1 (CR9) domain with Anti-P3 Abs dramatically reduces HFD-induced intracellular CE loading and harmful coupling to pro-inflammatory signaling in the vasculature

    Immunization with the Gly 1127 -Cys 1140 amino acid sequence of the LRP1 receptor reduces atherosclerosis in rabbits. Molecular, immunohistochemical and nuclear imaging studies

    Get PDF
    Altres ajuts: The main support to develop this project was received from Fundació MARATÓ TV3 Project 201521-10 (to VLl-C) and co-financed with ERDFs. Support was received from Fundació Marató TV3 (Project 201521-10) for post-doctoral funding to OB. DdG-C, VL-C and JCE-G are members of the Group of Vascular Biology of the Spanish Society of Atherosclerosis (SEA).Background : The LRP1 (CR9) domain and, in particular, the sequence Gly 1127 -Cys 1140 (P3) plays a critical role in the binding and internalization of aggregated LDL (agLDL). We aimed to evaluate whether immunization with P3 reduces high-fat diet (HFD)-induced atherosclerosis. Methods : Female New Zealand White (NZW) rabbits were immunized with a primary injection and four reminder doses (R1-R4) of IrP (irrelevant peptide) or P3 conjugated to the carrier. IrP and P3-immunized rabbits were randomly divided into a normal diet group and a HFD-fed group. Anti-P3 antibody levels were determined by ELISA. Lipoprotein profile, circulating and tissue lipids, and vascular pro-inflammatory mediators were determined using standardized methods while atherosclerosis was determined by confocal microscopy studies and non-invasive imaging (PET/CT and Doppler ultrasonography). Studies treating human macrophages (hMΦ) and coronary vascular smooth muscle cells (hcVSMC) with rabbit serums were performed to ascertain the potential impact of anti-P3 Abs on the functionality of these crucial cells. Results : P3 immunization specifically induced the production of anti-P3 antibodies (Abs) and did not alter the lipoprotein profile. HFD strongly induced cholesteryl ester (CE) accumulation in the aorta of both the control and IrP groups, and their serum dose-dependently raised the intracellular CE of hMΦ and hcVSMC, promoting TNFR1 and phospho-NF-kB (p65) overexpression. These HFD pro-inflammatory effects were dramatically decreased in the aorta of P3-immunized rabbits and in hMΦ and hcVSMC exposed to the P3 rabbit serums. Microscopy studies revealed that P3 immunization reduced the percentage of lipids, macrophages, and SMCs in the arterial intima, as well as the atherosclerotic extent and lesion area in the aorta. PET/CT and Doppler ultrasonography studies showed that the average standardized uptake value (SUV) of the aorta and the arterial resistance index (ARI) of the carotids were more upregulated by HFD in the control and IrP groups than the P3 group. Conclusions : P3 immunization counteracts HFD-induced fatty streak formation in rabbits. The specific blockade of the LRP1 (CR9) domain with Anti-P3 Abs dramatically reduces HFD-induced intracellular CE loading and harmful coupling to pro-inflammatory signaling in the vasculature

    Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes

    Get PDF
    Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes

    Molecular chaperone-mediated rescue of mitophagy by a Parkin RING1 domain mutant

    Get PDF
    Mitochondrial dysfunction is characteristic of many neurodegenerative diseases. The Parkinson's disease-associated ubiquitin–protein ligase, Parkin, is important in the elimination of damaged mitochondria by autophagy (mitophagy) in a multistep process. Here, we show that a Parkin RING domain mutant (C289G) fails to redistribute to damaged mitochondria and cannot induce mitophagy after treatment with the mitochondrial uncoupler carbonyl cyanide m-methylhydrazone, because of protein misfolding and aggregation. Parkin(C289G) aggregation and inclusion formation were suppressed by the neuronal DnaJ/Hsp40 chaperone HSJ1a(DNAJB2a). Importantly, HSJ1a and DNAJB6 also restored mitophagy by promoting the relocation of Parkin(C289G) and the autophagy marker LC3 to depolarized mitochondria. The rescue of Parkin activity and suppression of aggregation were J domain dependent for HSJ1a, suggesting the involvement of Hsp70 in these processes, but were not dependent on the HSJ1a ubiquitin interaction motif. HSJ1a expression did not enhance mitophagy mediated by wild-type Parkin. These data show the potential of molecular chaperones to mediate the functional recovery of Parkin misfolding mutants and to combat deficits associated with Parkin aggregation in Parkinson's disease
    corecore