6,876 research outputs found
Translational and rotational motions of albumin sensed by a non-covalent associated porphyrin under physiological and acidic conditions: a fluorescence correlation spectroscopy and time resolved anisotropy study.
The interaction between a free-base, anionic water-soluble porphyrin, TSPP, and the drug carrier protein, bovine serum albumin (BSA) has been studied by time-resolved fluorescence anisotropy (TRFA) and fluorescence correlation spectroscopy (FCS) at two different pH-values. Both rotational correlation times and translational diffusion times of the fluorescent species indicate that TSPP binding to albumin induces very little conformational changes in the protein under physiological conditions. By contrast, at low pH, a bi-exponential decay is obtained where a short rotational correlation time (¿ int¿=¿1.2 ns) is obtained, which is likely associated to wobbling movement of the porphyrin in the protein binding site. These physical changes are corroborated by circular dichroism (CD) data which show a 37% loss in the protein helicity upon acidification of the medium. In the presence of excess porphyrin formation of porphyrin J-aggregates is induced, which can be detected by time-resolved fluorescence with short characteristic times. This is also reflected in FCS data by an increase in molecular brightness together with a decrease in the number of fluorescent molecules passing through the detection volume of the sampl
Universality of Load Balancing Schemes on Diffusion Scale
We consider a system of parallel queues with identical exponential
service rates and a single dispatcher where tasks arrive as a Poisson process.
When a task arrives, the dispatcher always assigns it to an idle server, if
there is any, and to a server with the shortest queue among randomly
selected servers otherwise . This load balancing scheme
subsumes the so-called Join-the-Idle Queue (JIQ) policy and the
celebrated Join-the-Shortest Queue (JSQ) policy as two crucial
special cases. We develop a stochastic coupling construction to obtain the
diffusion limit of the queue process in the Halfin-Whitt heavy-traffic regime,
and establish that it does not depend on the value of , implying that
assigning tasks to idle servers is sufficient for diffusion level optimality
Time-resolved FRET fluorescence spectroscopy of visible fluorescent protein pairs
Förster resonance energy transfer (FRET) is a powerful method for obtaining information about small-scale lengths between biomacromolecules. Visible fluorescent proteins (VFPs) are widely used as spectrally different FRET pairs, where one VFP acts as a donor and another VFP as an acceptor. The VFPs are usually fused to the proteins of interest, and this fusion product is genetically encoded in cells. FRET between VFPs can be determined by analysis of either the fluorescence decay properties of the donor molecule or the rise time of acceptor fluorescence. Time-resolved fluorescence spectroscopy is the technique of choice to perform these measurements. FRET can be measured not only in solution, but also in living cells by the technique of fluorescence lifetime imaging microscopy (FLIM), where fluorescence lifetimes are determined with the spatial resolution of an optical microscope. Here we focus attention on time-resolved fluorescence spectroscopy of purified, selected VFPs (both single VFPs and FRET pairs of VFPs) in cuvette-type experiments. For quantitative interpretation of FRET–FLIM experiments in cellular systems, details of the molecular fluorescence are needed that can be obtained from experiments with isolated VFPs. For analysis of the time-resolved fluorescence experiments of VFPs, we have utilised the maximum entropy method procedure to obtain a distribution of fluorescence lifetimes. Distributed lifetime patterns turn out to have diagnostic value, for instance, in observing populations of VFP pairs that are FRET-inactiv
Picosecond fluorescence of intact and dissolved PSI-LHCI crystals
Over the last years many crystal structures of photosynthetic pigment-protein complexes have been determined, and used extensively to model spectroscopic results obtained on the same proteins in solution. However, the crystal structure is not necessarily identical to the structure of the protein in solution. Here we studied picosecond fluorescence of Photosystem I-Light Harvesting Complex I (PSI-LHCI), a multisubunit pigment protein complex that catalyzes the first steps of photosynthesis. The ultrafast fluorescence of PSI-LHCI crystals is identical to that of dissolved crystals, but differs considerably from most kinetics presented in literature. In contrast to most studies, the present data can be modeled quantitatively with only 2 compartments: PSI core and LHCI. This yields the rate of charge separation from an equilibrated core (22.5+/-2.5 ps) and rates of excitation energy transfer from LHCI to core (kLC) and vice versa (kCL). The ratio R=kCL/kLC between these rates appears to be wavelength-dependent and scales with the ratio of the absorption spectra of LHCI and core, indicating the validity of a detailed balance relation between both compartments. kLC depends slightly but non systematically on detection wavelength, averaging (9.4+/-4.9 ps)(-1). R ranges from 0.5 (below 690 nm) to around 1.3 above 720 nm
Mental Rotation is Not Easily Cognitively Penetrable
When participants take part in mental imagery experiments, are they using their "tacit knowledge" of perception to mimic what they believe should occur in the corresponding perceptual task? Two experiments were conducted to examine whether such an account can be applied to mental imagery in general. These experiments both examined tasks that required participants to "mentally rotate" stimuli. In Experiment 1, instructions led participants to believe that they could re-orient shapes in one step or avoid re-orienting the shapes altogether. Regardless of instruction type, response times increased linearly with increasing rotation angles. In Experiment 2, participants first observed novel objects rotating at different speeds, and then performed a mental rotation task with those objects. The speed of perceptually demonstrated rotation did not affect the speed of mental rotation. We argue that tacit knowledge cannot explain mental imagery results in general, and that in particular the mental rotation effect reflects the nature of the underlying internal representation and processes that transform it, rather than participants’ pre-existing knowledge.Psycholog
Regionalisation of asset values for risk analyses
International audienceIn risk analysis there is a spatial mismatch of hazard data that are commonly modelled on an explicit raster level and exposure data that are often only available for aggregated units, e.g. communities. Dasymetric mapping techniques that use ancillary information to disaggregate data within a spatial unit help to bridge this gap. This paper presents dasymetric maps showing the population density and a unit value of residential assets for whole Germany. A dasymetric mapping approach, which uses land cover data (CORINE Land Cover) as ancillary variable, was adapted and applied to regionalize aggregated census data that are provided for all communities in Germany. The results were validated by two approaches. First, it was ascertained whether population data disaggregated at the community level can be used to estimate population in postcodes. Secondly, disaggregated population and asset data were used for a loss evaluation of two flood events that occurred in 1999 and 2002, respectively. It must be concluded that the algorithm tends to underestimate the population in urban areas and to overestimate population in other land cover classes. Nevertheless, flood loss evaluations demonstrate that the approach is capable of providing realistic estimates of the number of exposed people and assets. Thus, the maps are sufficient for applications in large-scale risk assessments such as the estimation of population and assets exposed to natural and man-made hazards
A stochastic network with mobile users in heavy traffic
We consider a stochastic network with mobile users in a heavy-traffic regime.
We derive the scaling limit of the multi-dimensional queue length process and
prove a form of spatial state space collapse. The proof exploits a recent
result by Lambert and Simatos which provides a general principle to establish
scaling limits of regenerative processes based on the convergence of their
excursions. We also prove weak convergence of the sequences of stationary joint
queue length distributions and stationary sojourn times.Comment: Final version accepted for publication in Queueing Systems, Theory
and Application
- …
