26,679 research outputs found

    Clock spectroscopy of interacting bosons in deep optical lattices

    Full text link
    We report on high-resolution optical spectroscopy of interacting bosonic 174^{174}Yb atoms in deep optical lattices with negligible tunneling. We prepare Mott insulator phases with singly- and doubly-occupied isolated sites and probe the atoms using an ultra-narrow "clock" transition. Atoms in singly-occupied sites undergo long-lived Rabi oscillations. Atoms in doubly-occupied sites are strongly affected by interatomic interactions, and we measure their inelastic decay rates and energy shifts. We deduce from these measurements all relevant collisional parameters involving both clock states, in particular the intra- and inter-state scattering lengths

    The development of power specific redlines for SSME safety monitoring

    Get PDF
    Over the past several years, there has been an increased awareness in the necessity for rocket engine health monitoring because of the cost and complexity of present and future systems. A current rocket engine system, the Space Shuttle Main Engine (SSME), combines a limited redline system with closed-loop control of the engine's thrust level and mixture ratio. Despite these features, 27 tests of the SSME have resulted in major incidents. A SSME transient model was used to examine the effect of variations in high pressure turbopump performance on various engine parameters. Based on analysis of the responses, several new parameters are proposed for further investigation as power-level specific redlines

    Super-Resolution for Overhead Imagery Using DenseNets and Adversarial Learning

    Full text link
    Recent advances in Generative Adversarial Learning allow for new modalities of image super-resolution by learning low to high resolution mappings. In this paper we present our work using Generative Adversarial Networks (GANs) with applications to overhead and satellite imagery. We have experimented with several state-of-the-art architectures. We propose a GAN-based architecture using densely connected convolutional neural networks (DenseNets) to be able to super-resolve overhead imagery with a factor of up to 8x. We have also investigated resolution limits of these networks. We report results on several publicly available datasets, including SpaceNet data and IARPA Multi-View Stereo Challenge, and compare performance with other state-of-the-art architectures.Comment: 9 pages, 9 figures, WACV 2018 submissio

    Gamma-ray flares from red giant/jet interactions in AGN

    Full text link
    Non-blazar AGN have been recently established as a class of gamma-ray sources. M87, a nearby representative of this class, show fast TeV variability on timescales of a few days. We suggest a scenario of flare gamma-ray emission in non-blazar AGN based on a red giant interacting with the jet at the base. We solve the hydrodynamical equations that describe the evolution of the envelope of a red giant blown by the impact of the jet. If the red giant is at least slightly tidally disrupted by the supermassive black hole, enough stellar material will be blown by the jet, expanding quickly until a significant part of the jet is shocked. This process can render suitable conditions for energy dissipation and proton acceleration, which could explain the detected day-scale TeV flares from M87 via proton-proton collisions. Since the produced radiation would be unbeamed, such an events should be mostly detected from non-blazar AGN. They may be frequent phenomena, detectable in the GeV-TeV range even up to distances of 1\sim 1 Gpc for the most powerful jets. The counterparts at lower energies are expected to be not too bright.} {M87, and nearby non-blazar AGN in general, can be fast variable sources of gamma-rays through red giant/jet interactions.Comment: 8 pages, 4 figure

    The Tully-Fisher Zero Point Problem

    Full text link
    A long standing problem for hierarchical disk galaxy formation models has been the simultaneous matching of the zero point of the Tully-Fisher relation and the galaxy luminosity function (LF). We illustrate this problem for a typical disk galaxy and discuss three solutions: low stellar mass-to-light ratios, low initial dark halo concentrations, and no halo contraction. We speculate that halo contraction may be reversed through a combination of mass ejection through feedback and angular momentum exchange brought about by dynamical friction between baryons and dark matter during the disk formation process.Comment: 4 pages, 1 figure, to appear in proceedings of "Formation and Evolution of Galaxy Disks", Rome, October 2007, Eds. J.G. Funes, S.J. and E.M. Corsin

    Haro15: Is it actually a low metallicity galaxy?

    Get PDF
    We present a detailed study of the physical properties of the nebular material in multiple knots of the blue compact dwarf galaxy Haro 15. Using long slit and echelle spectroscopy, obtained at Las Campanas Observatory, we study the physical conditions (electron density and temperature), ionic and total chemical abundances of several atoms, reddening and ionization structure. The latter was derived by comparing the oxygen and sulphur ionic ratios to their corresponding observed emission line ratios (the eta and eta' plots) in different regions of the galaxy. Applying direct and empirical methods for abundance determination, we perform a comparative analysis between these regions.Comment: (Poster paper) 2 pages, 2 figure

    Radiation from matter entrainment in astrophysical jets: the AGN case

    Get PDF
    Jets are found in a variety of astrophysical sources, from young stellar objects to active galactic nuclei. In all the cases the jet propagates with a supersonic velocity through the external medium, which can be inhomogeneous, and inhomogeneities could penetrate into the jet. The interaction of the jet material with an obstacle produces a bow shock in the jet in which particles can be accelerated up to relativistic energies and emit high-energy photons. In this work, we explore the active galactic nuclei scenario, focusing on the dynamical and radiative consequences of the interaction at different jet heights. We find that the produced high-energy emission could be detectable by the current gamma-ray telescopes. In general, the jet-clump interactions are a possible mechanism to produce (steady or flaring) high-energy emission in many astrophysical sources in which jets are present.Comment: 4 pages, 2 figures. Accepted for publication in the Proceedings of the 275 IAU Symposium: "Jets at all Scales", held in Buenos Aires, September 13-17, 201
    corecore