282 research outputs found

    Single neuron transcriptomics identify SRSF/ SR protein B52 as a regulator of axon growth and Choline acetyltransferase splicing.

    Get PDF
    We removed single identified neurons from living Drosophila embryos to gain insight into the transcriptional control of developing neuronal networks. The microarray analysis of the transcriptome of two sibling neurons revealed seven differentially expressed transcripts between both neurons (threshold: log(2)1.4). One transcript encodes the RNA splicing factor B52. Loss of B52 increases growth of axon branches. B52 function is also required for Choline acetyltransferase (ChAT ) splicing. At the end of embryogenesis, loss of B52 function impedes splicing of ChAT, reduces acetylcholine synthesis, and extends the period of uncoordinated muscle twitches during larval hatching. ChAT regulation by SRSF proteins may be a conserved feature since changes in SRSF5 expression and increased acetylcholine levels in brains of bipolar disease patients have been reported recently

    Drosophila Neurotrophins Reveal a Common Mechanism for Nervous System Formation

    Get PDF
    Neurotrophic interactions occur in Drosophila, but to date, no neurotrophic factor had been found. Neurotrophins are the main vertebrate secreted signalling molecules that link nervous system structure and function: they regulate neuronal survival, targeting, synaptic plasticity, memory and cognition. We have identified a neurotrophic factor in flies, Drosophila Neurotrophin (DNT1), structurally related to all known neurotrophins and highly conserved in insects.By investigating with genetics the consequences of removing DNT1 or adding it in excess, we show that DNT1 maintains neuronal survival, as more neurons die in DNT1 mutants and expression of DNT1 rescues naturally occurring cell death, and it enables targeting by motor neurons. We show that Spa¨ tzle and a further fly neurotrophin superfamily member, DNT2, also have neurotrophic functions in flies. Our findings imply that most likely a neurotrophin was present in the common ancestor of all bilateral organisms, giving rise to invertebrate and vertebrate neurotrophins through gene or whole-genome duplications. This work provides a missing link between aspects of neuronal function in flies and vertebrates, and it opens the opportunity to use Drosophila to investigate further aspects of neurotrophin function and to model related diseases

    Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT) in living organisms.

    Get PDF
    Different toxicity tests for carbon nanotubes (CNT) have been developed to assess their impact on human health and on aquatic and terrestrial animal and plant life. We present a new model, the fruit fly Drosophila embryo offering the opportunity for rapid, inexpensive and detailed analysis of CNTs toxicity during embryonic development. We show that injected DiI labelled multi-walled carbon nanotubes (MWCNTs) become incorporated into cells in early Drosophila embryos, allowing the study of the consequences of cellular uptake of CNTs on cell communication, tissue and organ formation in living embryos. Fluorescently labelled subcellular structures showed that MWCNTs remained cytoplasmic and were excluded from the nucleus. Analysis of developing ectodermal and neural stem cells in MWCNTs injected embryos revealed normal division patterns and differentiation capacity. However, an increase in cell death of ectodermal but not of neural stem cells was observed, indicating stem cell-specific vulnerability to MWCNT exposure. The ease of CNT embryo injections, the possibility of detailed morphological and genomic analysis and the low costs make Drosophila embryos a system of choice to assess potential developmental and cellular effects of CNTs and test their use in future CNT based new therapies including drug delivery

    The Critical Balance Between Quiescence and Reactivation of Neural Stem Cells

    Get PDF
    Neural stem cells (NSC) are multipotent, self-renewing cells that give rise to all neural cell types within the central nervous system. During adulthood, most NSCs exist in a quiescent state which can be reactivated in response to metabolic and signalling changes, allowing for long-term continuous neurogenesis and response to injury. Ensuring a critical balance between quiescence and reactivation is required to maintain the limited NSC reservoir and neural replenishment throughout lifetime. The precise mechanisms and signalling pathways behind this balance are at the focus of current research. In this review, we highlight and discuss recent studies using Drosophila, mammalian and zebrafish models contributing to the understanding of molecular mechanisms underlying quiescence and reactivation of NSCs

    Distinct phenotypes of three-repeat and four-repeat human tau in a transgenic model of tauopathy.

    Get PDF
    Tau exists as six closely related protein isoforms in the adult human brain. These are generated from alternative splicing of a single mRNA transcript and they differ in the absence or presence of two N-terminal and three or four microtubule binding domains. Typically all six isoforms have been considered functionally similar. However, their differential involvement in particular tauopathies raises the possibility that there may be isoform-specific differences in physiological function and pathological role. To explore this, we have compared the phenotypes induced by the 0N3R and 0N4R isoforms in Drosophila. Expression of the 3R isoform causes more profound axonal transport defects and locomotor impairments, culminating in a shorter lifespan than the 4R isoform. In contrast, the 4R isoform leads to greater neurodegeneration and impairments in learning and memory. Furthermore, the phosphorylation patterns of the two isoforms are distinct, as is their ability to induce oxidative stress. These differences are not consequent to different expression levels and are suggestive of bona fide physiological differences in isoform biology and pathological potential. They may therefore explain isoform-specific mechanisms of tau-toxicity and the differential susceptibility of brain regions to different tauopathies

    Insights into nervous system repair from the fruit fly

    Get PDF
    Abstract Millions of people experience injury to the central nervous system (CNS) each year, many of whom are left permanently disabled, providing a challenging hurdle for the field of regenerative medicine. Repair of damage in the CNS occurs through a concerted effort of phagocytosis of debris, cell proliferation and differentiation to produce new neurons and glia, distal axon/dendrite degeneration, proximal axon/dendrite regeneration and axon re-enwrapment. In humans, regeneration is observed within the peripheral nervous system, while in the CNS injured axons exhibit limited ability to regenerate. This has also been described for the fruit fly Drosophila. Powerful genetic tools available in Drosophila have allowed the response to CNS insults to be probed and novel regulators with mammalian orthologs identified. The conservation of many regenerative pathways, despite considerable evolutionary separation, stresses that these signals are principal regulators and may serve as potential therapeutic targets. Here, we highlight the role of Drosophila CNS injury models in providing key insight into regenerative processes by exploring the underlying pathways that control glial and neuronal activation in response to insult, and their contribution to damage repair in the CNS

    Insights into nervous system repair from the fruit fly

    Get PDF
    Abstract Millions of people experience injury to the central nervous system (CNS) each year, many of whom are left permanently disabled, providing a challenging hurdle for the field of regenerative medicine. Repair of damage in the CNS occurs through a concerted effort of phagocytosis of debris, cell proliferation and differentiation to produce new neurons and glia, distal axon/dendrite degeneration, proximal axon/dendrite regeneration and axon re-enwrapment. In humans, regeneration is observed within the peripheral nervous system, while in the CNS injured axons exhibit limited ability to regenerate. This has also been described for the fruit fly Drosophila. Powerful genetic tools available in Drosophila have allowed the response to CNS insults to be probed and novel regulators with mammalian orthologs identified. The conservation of many regenerative pathways, despite considerable evolutionary separation, stresses that these signals are principal regulators and may serve as potential therapeutic targets. Here, we highlight the role of Drosophila CNS injury models in providing key insight into regenerative processes by exploring the underlying pathways that control glial and neuronal activation in response to insult, and their contribution to damage repair in the CNS.</jats:p
    corecore